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Abstract

The genomic sequence of an organism is nearly identical in all its cells and over

its lifetime. Epigenomic marks, however, such as DNA methylation and chromatin

accessibility, are subject to drastic changes across different tissues and throughout

organism development. Recent advancements, notably the development of multi-omics

single-cell technologies, allow for simultaneous interrogation of DNA methylation,

chromatin accessibility, and transcriptomes within individual cells. This offers unique

opportunities to gain insight into mechanisms by which the epigenome shapes gene

expression and influences cell fate. However, analyzing these datasets poses major

challenges: Typically, smaller number of cells can be assayed per experiment than

conventional single-cell RNAseq with lower coverage due to small amounts of input

material. This means that classical statistical methods are underpowered to detect

subtle changes in DNA-methylation and chromatin accessibility. Furthermore, current

tests can only detect differences between discrete and pre-defined cell populations,

whereas single-cell approaches allow for studying continuous processes organismal

lineage development.

To address this, I propose computational methods for decomposing single-cell epige-

netic heterogeneity across developmental time and genomic loci. This thesis introduces

new concepts, leveraging pseudotemporal ordering of cells, to conduct statistical in-

ferences upon epigenetic changes. At the core of these developments is GPmeth, a

Gaussian process framework designed to model highly sparse single-cell methylation

and accessibility information by enforcing smooth variation across pseudotime and ge-

nomic coordinates and thus effectively sharing information between cells and genomic

positions. Importantly, this model does not rely on averaging methylation signals

across fixed genomic windows but can identify differentially methylated/accessible

regions in a data-driven way. Testing GPmeth against other models without dynamic

aggregation of methylation data revealed increased sensitivity to detect even subtle

epigenetic changes.

Application of GPmeth to scNMT-seq data from mouse embryonic stem cells undergo-

ing gastrulation revealed over 3000 enhancer elements that exhibited dynamic changes

in chromatin accessibility or DNA methylation rates during germ layer formation.

The detailed spatiotemporal model allowed for a precise definition of differentially

methylated regions, validated by transcription factor binding motif analysis. Fur-

thermore, the clustering of temporal epigenetic patterns identified lineage-specific

enhancers in an unsupervised manner.

I expect GPmeth to be a valuable tool to study time-resolved epigenetic regulation

in several emerging multimodal single-cell datasets.
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Zusammenfassung

Die Genomsequenz eines Organismus ist in allen seinen Zellen und über sein gesamtes

Leben hinweg nahezu identisch. Epigenomische Marker wie DNA-Methylierung und

die Zugänglichkeit von Chromatin variiren jedoch drastisch zwischen verschiedenen

Geweben und während der Entwicklung des Organismus. Jüngste Fortschritte, ins-

besondere die Entwicklung von Multi-Omics-Einzelzelltechnologien, ermöglichen die

gleichzeitige Messung von DNA-Methylierung, Chromatin-Zugänglichkeit und Genex-

pression innerhalb einzelner Zellen. Dies bietet neue Möglichkeiten, Einblicke in die

Mechanismen zu gewinnen, durch die das Epigenom die Genexpression prägt und das

die Entwicklung von Zellen beeinflusst. Die Analyse dieser Datensätze stellt jedoch

große Herausforderungen dar: Verglichen mit herkömmlichem Einzelzell-RNAseq,

kann typischerweise pro Experiment eine geringere Anzahl von Zellen mit geringerer

Abdeckung untersucht werden. Dies bedeutet, dass klassische statistische Methoden

zum Testen von DNA-Methylierungs- und Chromatin-Zugänglichkeitsunterschieden

nicht ausreichen, um subtile Veränderungen zu erkennen. Dazu kommt, dass aktuelle

Tests nur Unterschiede zwischen diskreten und vordefinierten Zellpopulationen testen,

während Einzelzellansätze die Untersuchung kontinuierlicher Prozesse der Entwicklung

der Abstammungslinie von Organismen ermöglichen.

Deshalb führe ich hier rechnerische Methoden zur Zerlegung der epigenetischen

Heterogenität einzelner Zellen über die Entwicklungszeit und die genomischen Loci

ein. Diese Arbeit stellt neue Konzepte vor, die die pseudotemporale Ordnung von

Zellen nutzen, um statistische Rückschlüsse auf epigenetische Veränderungen zu

ziehen. Im Mittelpunkt dieser Entwicklungen steht GPmeth, ein Gaußsches Prozess-

Framework, das darauf ausgelegt ist, äußerst spärliche Einzelzell-Methylierungs- und

Chromatin Zugänglichkeitsinformationen zu modellieren, indem eine kontinuierliche

Variation über Pseudozeit und Genomkoordinaten hinweg erzwungen wird, und

so, Informationen effektiv über Zellen und Genompositionen hinweg ausgetauscht

werden. Wichtig ist, dass dieses Modell keine festgesetzten Genomfenster vorraussetzt,

sondern differenziell methylierte/zugängliche Regionen auf datengesteuerte Weise

identifizieren kann. Im Vergleich zu anderen Modellen ohne dynamische Aggregation

von Methylierungsdaten, hat GPmeth erhöhte Sensitivität zur Identifikation subtiler

epigenetischer Veränderungen.

Die Anwendung von GPmeth auf scNMT-seq-Daten aus embryonalen Stammzellen

von Mäusen während des Gastrulationsprozesses, ergab über 3000 Enhancer-Elemente,

die dynamische Veränderungen in der Zugänglichkeit von Chromatin oder den DNA-

Methylierungsraten zeigten. Das detaillierte räumlich-zeitliche Modell ermöglichte

eine präzise Definition unterschiedlich methylierter Regionen, validiert durch die
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Analyse von Transkriptionsfaktor-Bindungsmotiven. Darüber hinaus identifizierte die

Clusteranalyse der Modell-Resultate bekannte Abstammungsspezifische Enhancer.

Ich erwarte, dass GPmeth ein wertvolles Werkzeug zur Untersuchung der zeitauf-

gelösten epigenetischen Regulation in mehreren neu entstehenden multimodalen

Einzelzelldatensätzen sein wird.
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1 | Introduction

The advent of massively parallel sequencing technologies over the last two decades

has allowed researchers to study the genomic and transcriptomic landscape of many

organisms in increasing detail (Metzker, 2010; Reuter et al., 2015). Being able to

measure gene expression of all genes, or to call all mutations at once, has turned

biology into a data science discipline (Wang et al., 2009). The extension of genome-

wide sequencing to single-cell technologies added an additional dimension of cellular

state to these experiments. It allowed us to look at organisms and cells as dynamic

systems with complex interplay where any changes to the system can have surprising

emergent properties. One of the ultimate goals of systems biology is to understand

how all components of a system work together to produce a phenotype (Aderem,

2005).

In this context, a system of interest can be whole organisms, specialized tissues, or

individual cells. Since cells are the fundamental building blocks of all higher organisms,

understanding their inner workings is crucial to biology as a field of research. One of

the guiding frameworks that biologists use to think about cellular systems is called

the central dogma of molecular biology (Crick, 1970). It states that there is a flow

of information from DNA to RNA to protein. This follows the molecular pathway

in which genes are transcribed into messenger RNAs (mRNA) in the cell nucleus,

which are then transported to the cytoplasm and translated into amino acid chains

that fold into mature proteins. Given a full understanding of the system, it should

be possible to predict RNA expression from DNA sequence and protein abundance

from RNA expression, ultimately determining the system’s phenotypic characteristics.

While this might seem like a simple task at first glance, countless aspects of biological

systems make it more difficult to generate accurate predictions about them (Kim and

Wysocka, 2023). For example, the same DNA stretch can encode multiple proteins

due to alternative splicing and posttranslational modifications (Pan et al., 2008).

Predicting RNA expression from sequence information is complicated by the fact that

transcription, the process of transcribing DNA into messenger RNA molecules, is

regulated by a myriad of factors that act on the DNA in the nucleus (Lee and Young,

2013). In fact, it turns out that the flow of information in cells is not linear from

DNA to protein but cyclical since proteins called transcription factors (TFs) play a

critical role in controlling transcription (Reményi et al., 2004).
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Furthermore, DNA contains more information than is encoded purely in its sequence.

DNA molecules in a cell carry chemical modification that can be inherited through

cell divisions and even across generations. One of the key modifications is DNA

methylation, which modifies cytosine, one of the four bases that make up DNA.

Additionally, the spatial organization of DNA in the nucleus plays a major regulatory

role. DNA is organized into chromatin, a complex of a DNA molecule wrapped around

eight histone proteins forming nucleosomes. The density of packing nucleosomes

together directly impacts the accessibility of the DNA and, therefore, transcription

(Venkatesh and Workman, 2015). Furthermore, nucleosomes can also carry chemical

modifications, which influence transcription in both direct and indirect ways (Millán-

Zambrano et al., 2022).

Taken together, these modes of gene regulation that are not a direct result of DNA

sequence are called epigenetics. Epigenetic information is a key factor that determines

cell identity. Cells can transmit this information to daughter cells during mitosis,

allowing them to form coordinated groups of cells that make up tissues and organs. It

also plays a key role in establishing cell identities during the development of organisms,

where cells differentiate to fulfill different roles.

In this work, I will introduce a modeling approach to track DNA methylation and

chromatin accessibility that is continuously changing during organism development.

My approach makes use of recent advances in single-cell multimodal sequencing

technology (Clark et al., 2018) that enable the measurement of gene expression and

epigenetics in the same cell. I apply my modeling framework to study how DNA

methylation and chromatin accessibility change during embryonic development and

to assess their impact on gene regulation.

1.1 Epigenetics and gene regulation

Mammalian cells carry out their functions using molecular machines called proteins.

In mice, the amino acid sequences of these proteins are encoded by an estimated

25,000 genes (Blake et al., 2020). Cells can have drastically different relative protein

abundances depending on cell type, tissue of origin, and cellular environment (Gi-

ansanti et al., 2022). A protein’s abundance is a direct result of the rate of production

(translation) of the protein and the rate of degradation over time. The rate of protein

translation is influenced by the rate of expression (transcription) of its corresponding

gene. Gene expression is tightly controlled by the cell to ensure its proper function.

1.1.1 Principles of gene regulation

For a gene to be transcribed into mRNA, RNA polymerase II has to be recruited to

the transcription start site (TSS) of that gene (Sainsbury et al., 2015). This typically

happens in conjunction with different co-factors, forming a so-called transcription

pre-initiation complex (Fig 1.1). This protein complex binds to the promoter, a



1.1 Epigenetics and gene regulation 3

short region of DNA that is located in close proximity to the TSS. Typically, genes

have a single promoter whose sequence can influence the transcription rate of a

gene. However, gene regulation in eukaryotes typically involves additional genomic

elements that can be located further away from the TSS (Panigrahi and O’Malley,

2021.) These elements include enhancers, silencers, and insulators. Their mode of

action involves the recognition of their sequence by DNA-binding proteins called

TFs (Kim and Wysocka, 2023). Although these elements are distal in sequence space,

the 3D organization of DNA puts them in close spatial proximity to the promoter

of a regulated gene. Thus, TFs bound to an enhancer can form a physical protein

complex with proteins bound to promoter elements. Because of the dynamics of DNA

organization in the nucleus, one enhancer can regulate multiple genes, and a single

gene can be under the control of multiple enhancers.

Figure 1.1 | Transcription initiation complex. Mammalian transcription is carried
out by RNA Polymerase II (Pol II). In most cases, Pol II requires the binding of TFs to
regulatory elements. These TFs can bind close to the transcription start site (TSS) of the
gene to promoters or to distal regulatory elements called enhancers. Bound TFs and different
co-factors form the pre-initiation complex that is essential for regulating transcription. Figure
generated by Max Frank.

Gene-enhancer associations are highly cell-type specific and are, therefore, likely to

have major roles in establishing cell identity. Mapping the network of gene-enhancer

links and understanding how this network is regulated is key to understanding

organism development. As mentioned above, TF binding is necessary to induce

transcription. TFs possess DNA binding domains that recognize 6-10 base pair (bp)

long DNA sequences called binding motifs (Lambert et al., 2018). About 8% of human

genes are estimated to function as TFs. This subset of genes can be considered a set

of "master regulators" for the expression profile of the rest of the genome. TF binding

is mediated not only by DNA sequence but also by the following epigenetic marks.

DNA methylation of enhancers can have both a positive and a negative impact on



4 Introduction

TF binding (see Section 1.1.2). The accessibility of the binding motif (i.e., whether

a nucleosome covers the motif sequence) is a prerequisite for most TFs to bind.

However, there are pioneer TFs that can bind to histone-bound DNA (see Section

1.1.3). Histone marks also play a role in TF binding, both directly and indirectly, by

establishing the 3D architecture of DNA (see Section 1.1.4). Furthermore, many TFs

do not bind DNA in isolation but require co-factors to bind cooperatively. Different

epigenetic marks will be discussed in more detail in the next Sections.

1.1.2 DNA methylation

DNA methylation involves the deposition of a methyl group to the DNA (Mattei

et al., 2022). The most commonly studied form of DNA methylation is the addition

of a methyl group to the 5th position of the pyrimidine ring of a cytosine base (C),

converting it to 5-methylcytosine (5mC). In the rest of this text, DNA methylation

will be used synonymously with 5mC. The conversion of C to 5mC is carried out

by enzymes called methyltransferases almost exclusively in the context of CpG

dinucleotides (Fig 1.2). CpGs are generally depleted in mammalian genomes, except

for local exceptions called CpG islands (Bird et al., 1985). While the majority (75%)

of CpG sites in mammalian genomes are methylated, methylation rates are typically

low in CpG islands (Moore et al., 2013).

Figure 1.2 | Overview of mammalian 5mC DNA methylation. a) 5mC DNA methy-
lation adds a methyl group to the carbon atom in the 5th position of the pyrimidine ring.
b)Mammalian DNA methylation in different chromosomal contexts. CpG islands are regions
in the genome with a high density of CpG sites. In enhancer and promoter regions, DNA
methylation is correlated with gene expression, suggesting a regulatory role. It also plays a
role in silencing otherwise harmful stretches of DNA, such as transposable elements. Figure
generated by Max Frank.
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1.1.2.1 DNA methylation in different genomic contexts

DNA methylation has major impacts on gene expression, most famously in the

complete repression of transcription of inactivated X-chromosomes. In XX cells

of female mammals, only one X-chromosome is transcriptionally active to ensure

dosage compensation of gene products (Galupa and Heard, 2018). CpG islands on the

inactivated X-chromosome are typically highly methylated, ensuring lasting repression

of transcription. However, DNA methylation is not the only factor in X inactivation

and might only be an additional safeguard ensuring its stability.

DNA methylation is also paramount in permanently silencing parts of the genome

that would cause genomic instability if active. These areas include transposable

elements and structural elements of chromosomes, such as telomeres and centromeres.

Transposable elements comprise a large part of mammalian genomes and can change

their position in the genome and duplicate themselves if transcribed (Pourrajab and

Hekmatimoghaddam, 2021). Repressions of these elements might be the function that

initially contributed to the evolution of DNA methylation as a regulatory mechanism

(Yoder et al., 1997).

DNA methylation is also enriched in the gene bodies of highly transcribed genes.

While methylation clearly does not function as a repressor in this context, it is not

fully understood what exact function it serves (Jones, 2012). One suggested role

is the control of alternative splicing, supported by the fact that exons have higher

methylation rates than introns. It could also be involved in preventing transcription

from intragenic promoters (Dahlet et al., 2020) .

Gene promoters can be roughly categorized by the presence or absence of a CpG

island in their sequence (Saxonov et al., 2006). In CpG-poor promoters, which make

up 30-40% of most mammalian genomes, the influence of DNA methylation on

transcription is unclear. Promoters containing CpG islands are generally more highly

expressed than genes with CpG-poor promoters (Larsen et al., 1992). However, it

seems that while low methylation rates in these promoters are a requirement for

high rates of transcription, it is not sufficient since transcriptionally silent genes with

demethylated CpG island promoters are also frequently found. This hints at a more

intricate regulatory mechanism involving enhancers and multiple TFs (Weber et al.,

2007).

In enhancers, DNA methylation is likely to play a regulatory role, evidenced by the

fact that methylation rates are highly variable in active enhancer elements (Ziller et al.,

2013; Schultz et al., 2015). Enhancers are unlikely to be found in CpG island regions.

While most of the mammalian genome outside CpG islands is fully methylated, active

enhancers tend to have intermediate methylation rates between 10-50% (Stadler et al.,

2011). An open question is how enhancer methylation influences the binding of TFs.

Several TFs preferentially bind to unmethylated DNA, such as CTCF (Wang et al.,

2012b; Maurano et al., 2015), CREB1 (Kaluscha et al., 2022) and NRF1 (Domcke
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et al., 2015). This suggests that DNA methylation can serve as a repressive mark

for these TFs. However, a subset of TFs, called pioneer factors, bind to DNA in a

repressed epigenetic state and initiate a cascade of events that contributes to the

activation of an enhancer (Iwafuchi-Doi and Zaret, 2014). Some of these factors have

been shown to bind preferentially to methylated DNA. Examples are p53 (Kribelbauer

et al., 2017), which is often mutated in human cancers, and Oct4 (Yin et al., 2017),

which is a marker for stem cells. Recent evidence in mouse embryonic stem cells

showed that the majority of TFs are not sensitive to DNA methylation, therefore

asking the question of whether there is a more indirect effect of DNA methylation on

enhancer activity or if it is a consequence of it (Kreibich et al., 2023).

1.1.3 Chromatin accessibility

In the nucleus of eukaryotic cells, DNA is organized in a complex arrangement called

chromatin (Kouzarides, 2007). The central chromatin components are nucleosomes,

octamers of histone proteins that DNA wraps around twice. Typically, 147bp of

DNA are nucleosome-wrapped with linker regions of about 80bp (Luger et al., 1997).

These chains of DNA-wrapped nucleosomes can further condense into tightly packed

fibers of heterochromatin that are hard to access for DNA-binding proteins (Fig

1.3). Heterochromatin is typically marked by specific histone modifications such as

absence of Histone acetylation and H3K9me, as well as DNA methylation (Allshire

and Madhani, 2018). Large parts of the human genome, such as centromeres and

telomeres, are permanently in a heterochromatic state and, thus, called constitutive

heterochromatin. Other parts of the genome are subject to active regulation and only

become heterochromatin depending on cell state. Thus, they are called facultative

heterochromatin. In female mammals, the inactivated X chromosome is completely

heterochromatic, while the other X chromosome has more accessible stretches of

DNA called open chromatin or euchromatin (Galupa and Heard, 2018). On a global

scale, euchromatin makes up only 2-3% of the total genomic sequence but harbors

the majority of regulatory elements that can be bound by TFs (Klemm et al., 2019).
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Figure 1.3 | Overview of mammalian chromatin accessibility. Mammalian DNA
strands are organized as chromatin by wrapping around nucleosomes. These nucleosomes
can be tightly packed, leading to inaccessible heterochromatin (left). Euchromatin is more
loosely packed, and nucleosomes can be displaced by TFs or other binding proteins, allowing
access to the DNA sequence. Figure generated by Max Frank.

In euchromatic regions, DNA accessibility is determined by the positioning of nu-

cleosomes. Nucleosomes can dynamically detach and attach from DNA and are in

constant competition for binding with other regulatory proteins (Jiang and Pugh,

2009). There are several mechanisms of nucleosome replacement by TFs that cause

local changes in DNA accessibility (Venkatesh and Workman, 2015). The simplest

mechanism is TF binding during a short period of DNA exposure due to natural

nucleosome turnover (Workman, 2006). Other mechanisms involve the interaction of

TFs with the nucleosomes themselves, whereby different histone modifications play

a role (see below). Pioneer TFs may be able to bind nucleosome-bound DNA and

displace the nucleosome. It is important to notice that all these events happen on

very short timescales and with some degree of stochasticity (Lammers et al., 2020).

Therefore, measurements of DNA accessibility in cell populations will yield an average

of all DNA states, weighted by occupancy time and strength of the different DNA

binding proteins. Different methods to measure DNA accessibility will be discussed

in more detail below.

1.1.4 Histone modifications

Histone Modifications refer to post-translational modifications occurring on histones

within nucleosomes (Fig 1.4). These modifications can influence gene expression con-

siderably, mostly operating indirectly by regulating the binding of TFs or chromatin

remodeling proteins. The result of this regulation can both induce or inhibit gene

expression. (Millán-Zambrano et al., 2022). While early studies focused on modifica-

tions at the histone tail (Fig 1.1.4), more recent studies also investigate the function

of such modification at the globular domains of histones (Millán-Zambrano et al.,

2022). Several types of histone modifications exist, each capable of eliciting drastically
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different effects on gene regulation. Among these modifications are methylation, acety-

lation, phosphorylation, ubiquitination, and sumoylation. Notably, histone acetylation

and histone methylation are the most thoroughly studied. Nomenclature for histone

modification consists of defining the modified histone within the nucleosome, followed

by the amino acid within the histone, and finally, the modification itself. Acetylation

of the lysine at the 27th N-terminal position on histone 3, therefore, would be denoted

as H3K27ac.

Figure 1.4 | Overview of mammalian histone modifications. Histone modifications
refer to post-translational modifications of the histone within nucleosomes. Known histone
modifications include methylation, acetylation, ubiquitination, phosphorylation, and sumoy-
lation. These modifications can occur at different amino acids of the histone tails, leading to
a complex modification pattern. Figure generated by Max Frank.

Histone methylation involves adding one or multiple methyl groups to residues,

resulting in mono-, di-, or trimethylation (me1, me2, me3) (Greer and Shi, 2012).

These modifications are added by histone methyltransferases (HMTs), while histone

demethylases remove them (Rice et al., 2003). Histone 3 lysine 4 trimethylation

(H3K4me3) is a well-studied modification enriched at active gene promoters (Talbert et

al., 2019). While it is thought to facilitate transcription by promoting the recruitment

of transcriptional machinery (Vermeulen et al., 2007), its necessity for transcription

remains debated (Henikoff, MillanHenikoff and Shilatifard, 2011; Millán-Zambrano

et al., 2022). In mammals, H3K4me3 can persist during transcriptionally quiescent

states, potentially contributing to epigenetic memory and influencing gene expression

patterns and developmental capacity in embryos (Zhang et al., 2016).

Additional modifications include H3K4me1, which is associated with enhancers, and

H3K27me3 and H3K9me3, which are linked to heterochromatin and transcriptional

repression, respectively (Millán-Zambrano et al., 2022). H3K4me1 is enriched at

enhancers but not highly correlated with their activity, potentially priming enhancers

for future activities. H3K27me3 is associated with silenced heterochromatin, repression
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of enhancers and promoters, and serves as epigenetic memory. H3K9me3 is a hallmark

of constitutive heterochromatin and is, therefore, also associated with transcriptional

repression. Inactivated X chromosomes are enriched in H3K9me2, while actively

transcribed gene bodies are typically marked by H3K36me3 (Barski et al., 2007).

Histone methylation was shown to be a central regulator of embryonic development

in animals, playing important roles in maintaining pluripotency in stem cells and

differentiation of tissues (Jambhekar et al., 2019).

Histone acetylation is generally associated with transcriptional activity. It occurs

at active promoters, enhancers, and accessible chromatin regions and is added by

histone acetyltransferases and removed by histone deacetylases (Grunstein, 1997).

The most prominent histone acetylation is H3K27ac, which is often used to verify

the activity of enhancers (Wang et al., 2008). H3K27ac might directly influence TF

binding since several TFs showed altered binding patterns after a knockout of histone

deacetylases in mouse embryonic stem cells (Cusack et al., 2020).

1.1.5 Epigenetic regulation during embryonic development

While epigenetic marks are mostly stable in a given cell type over the span of a

mammalian organism, they undergo drastic changes during organism development

(Lee et al., 2014). Epigenetics is a key factor in the differentiation of omnipotent stem

cells that all carry the same genetic code into highly specialized cells that make up

the tissues and organs of an adult mammal (Rulands et al., 2018; Meissner, 2010).

Embryonic development in mammals is a highly conserved process, which makes it

amenable to study in model organisms (Solnica-Krezel and Sepich, 2012). The most

widely used model organisms are mice (Mus musculus) (Hanna et al., 2018).

Mouse and human embryonic development begins with fertilization, at which the

genetic code of a sperm and an ovarian cell fuses to form a zygote. This is followed by

blastulation, during which the zygote divides and forms a blastocyst that will implant

itself into the mother’s uterus. The embryonic part of the blastocyst contains Epiblast

cells, a disc-shaped collection of pluripotent stem cells that eventually give rise to the

embryo (Gilbert, 2000). The process of forming the three main germ layers, Mesoderm,

Endoderm, and Ectoderm, from Epiblast cells is called gastrulation. It starts with

the linear invagination of the Epiblast cells to form the primitive streak, establishing

the bilateral symmetry of the embryo. Cells invaginated to form the primitive streak

will give rise to the Mesoderm and Endoderm germ layers. The Mesoderm further

differentiates during organogenesis to give rise to the heart, kidneys, circulatory

system, bones, and muscular tissues. The Endoderm layer gives rise to the lungs,

intestines, thyroid, pancreas, and bladder. Cells that did not invaginate to form the

primitive streak form the Ectoderm, which gives rise to the nervous system as well as

the eyes and ears and the outermost layer of skin (Stern, 2004).
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Since embryonic development involves drastic changes in epigenetic regulation and

gene and protein expression, it provides an attractive system to understand gene

regulation that undergoes a natural perturbation of this magnitude. Furthermore,

several clinically relevant dysfunctions in early embryonic development have epigenetic

origins (Bergman and Cedar, 2013). Therefore, extensive research has been done,

historically mainly focusing on individual components of the system. The advance

of high-throughput sequencing technologies has made it possible to simultaneously

track thousands of genes during development (Cao et al., 2019; Pijuan-Sala et al.,

2019), as well as assess epigenetic marks on a genome-wide scale (Lee et al., 2014;

Rulands et al., 2018; Wu et al., 2016; Atlasi and Stunnenberg, 2017).

DNA methylation and accessibility, as well as histone modifications, have been studied

with bulk sequencing methods (see Section 1.2), which revealed that there are two

main waves of genome-wide demethylation and remethylation (Lee et al., 2014; Smith

et al., 2012; Wang et al., 2014) (Fig 1.5).

Figure 1.5 | Genome-wide changes in DNA methylation during embryonic devel-
opment. The grey line represents the genome-wide methylation rate during the first days of
embryonic development (E0.5 to E6.5), measured from fertilization. After fertilization, there is
a rapid wave of demethylation up to the Blastocyst stage at E3.5, where the methylation rate
drops to around 20%. After this, the Blastocyst implants into the uterus, and methylation
levels are increased to about 80% during the Epiblast stage around E6.5. Most somatic
tissues will maintain this methylation level throughout the organism’s lifetime. Changes in
methylation after this stage are highly localized and target regulatory regions involved in
tissue differentiation. Figure generated by Max Frank.

The first methylation wave involves rapid and progressive demethylation, resulting

in only approximately 20% of CpGs in the genome remaining methylated at the

blastocyst stage, which is thought to allow cells to achieve a pluripotent state (Wang et

al., 2014). DNA methylation is only retained at transposable elements and constitutive
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heterochromatic regions. This also corresponds with high chromatin accessibility (Wu

et al., 2016) and a lack of topologically associated domains as measured by Hi-C

experiments (Ke et al., 2017; Du et al., 2017). Histone marks are still present in

this phase and are hypothesized to influence the gene expression of pluripotent stem

cells (Tee and Reinberg, 2014). An interesting set of developmental genes carry both

activating H3K4me3 and repressive H3K27me3 marks at their so-called bivalent

promoters (Bernstein et al., 2006). These promoters generally remain unmethylated

and are thought to be poised for quick transcription initiation. After implantation, a

global remethylation wave occurs, leading to a global hypermethylation state.

The blastocyst that forms after implantation consists of relatively homogeneous

cells, making it suitable for bulk sequencing to obtain accurate characterizations

(Smith et al., 2012). However, studying germ layer specification, which involves the

development of distinct cell lineages, is extremely challenging without single-cell

technologies. Despite the difficulties, some studies have manually dissected each germ

layer and performed bulk sequencing (Xiang et al., 2020; Auclair et al., 2014). These

studies have revealed that the initially homogeneous epigenetic landscape in the

Epiblast gives way to a more dynamic landscape, where regulatory elements are

activated in a lineage-specific manner.

Recently, the development of single-cell multi-modal technologies has provided new

opportunities to study cell fate commitment events during gastrulation (Kelsey et al.,

2017; Clark et al., 2018). These technologies allow the unambiguous assignment

of epigenomes to transcriptomes (gene expression profiles) at the single-cell level,

enabling a more comprehensive understanding of the processes involved.

1.2 Techniques for epigenetic profiling

Methods for epigenetic profiling have been available for bulk tissues for quite a while.

With the advent of single-cell RNA sequencing and the increased ability to study

heterogeneous populations of cells as well as dynamically changing biological processes,

the need for epigenetic measurements in individual cells became clear. The following

Sections will discuss currently available methods to profile DNA methylation and

accessibility on a single-cell level.

1.2.1 DNA methylation

Single-cell DNA methylation profiling protocols have been developed based on bulk

methods, particularly bisulfite sequencing (BS-seq). BS-seq involves treating DNA

with sodium bisulfite, which converts unmethylated cytosine residues to uracil (and

later to thymine after PCR amplification), leaving methylated cytosine intact. The

resulting C-to-T transitions can be detected by DNA sequencing (Frommer et al.,

1992). Care must be taken in the alignment of bisulfite-converted reads since there are

now mismatches with the reference genomes at all unmethylated cytosine positions. In
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principle, this technique could be extended without many adaptations to a well-based

single-cell sequencing approach. However, conventional BS-seq has limitations due

to DNA degradation caused by purification steps and bisulfite treatment, making

it challenging to use with low amounts of DNA. To overcome this issue, a modified

protocol called post-bisulfite adaptor tagging (PBAT) was developed, which includes

multiple rounds of 3’ random primer amplification. By performing bisulfite treatment

before adaptor ligation, the loss of adapter-tagged molecules is minimized, enabling

the use of single-cell BS-seq (scBS-seq) with low-input material (Smallwood et al.,

2014).

1.2.2 DNA accessibility

The main protocols for profiling DNA accessibility in bulk tissues are the assay for

transposase-accessible chromatin sequencing (ATAC-seq) (Buenrostro et al., 2013),

DNase I hypersensitive sites sequencing (DNase-seq) (Song and Crawford, 2010) and

Nucleosome Occupancy and Methylome-sequencing (NOMe-seq) (Kelly et al., 2012).

All three techniques rely on the introduction of DNA-modifying proteins to the cell.

These proteins will modify the accessible parts of DNA in a way that is ultimately

detectable via sequencing readout. Figure 1.6 overviews the experimental protocols

for NOMe-seq, ATAC-seq, and DNase-seq.

ATAC-seq relies on the Tn5 transposase to cut accessible sites but with the advantage

of directly ligating sequencing adapters to the cleavage sites. This means that cleaved

fragments can be amplified via PCR and ultimately sequenced. ATAC-seq is currently

the standard protocol for quantifying DNA accessibility in bulk populations. It has

also been adapted as a droplet-based single-cell protocol, allowing it to measure

accessibility in large populations of cells at low cost (Buenrostro et al., 2015).

In the case of DNase-seq, at low concentrations, DNase I will cleave accessible DNA,

making it amenable to sequencing (Song and Crawford, 2010). This technique has

been widely used in the past and has also been adapted as a single-cell protocol (Jin

et al., 2015).

NOME-seq is a technique that measures both DNA accessibility and DNA methylation.

It relies on the GpC methyltransferase M.CviPI, which will methylate accessible

cytosines in the GpC sequence context (Kelly et al., 2012). Note that this differs

from endogenous methylation, which occurs mainly in the CpG context. Bisulfite

sequencing can then be used as a readout for both endogenous DNA methylation

and DNA accessibility. Since bisulfite sequencing has been successfully adapted to

single-cell applications, NOME-seq can also be utilized to assay single-cell methylation

and accessibility (Pott, 2017).
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Figure 1.6 | Overview of different techniques for chromatin accessibility profiling.
The three columns depict the steps involved in profiling chromatin accessibility with NOMe-
seq, DNase-seq and ATAC-seq (from left to right). CpG sites (circles) are endogenously
methylated (black) or unmethlyated (white), while all accessible GpC sites (hexagons) become
methylated (black) after M.CviPI (pink) treatment. Histones are denoted in blue; DNaseI in
yellow; and Tn5 transposase in green, with its sequencing adapters in red. Figure generated
by Max Frank, adapted from Nordström et al., 2019.

There are several advantages and disadvantages to NOMe-seq compared to the

standard ATAC-seq protocol (Nordström et al., 2019). ATAC-seq is a cheaper droplet-

based protocol that is able to profile many more cells, albeit at lower sequencing

depths per cell. Being well-based, the cost of profiling more than a few thousand

cells with NOMe-seq can become prohibitive. However, NOMe-seq generates a DNA

accessibility readout at high resolution that is only limited by the density of GpC sites

in the genome (which is every 16bp on average) as opposed to cleavage fragment sizes.

Furthermore, NOME-seq provides a deterministic boolean output at any covered site

since a CpG/GpC is either methylated or not. With count-based methods, inaccessible

regions cannot be distinguished directly from regions with low coverage. Furthermore,

NOMe-seq has the advantage of DNA methylation as an additional output, making

it a valuable tool to study the interplay of those two genomic layers.

1.3 Single-cell multi-modal profiling

In the previous Chapter, I discussed NOMe-seq as an example of a protocol that can

profile two molecular layers within a single cell. Such techniques will be referred to as

multi-modal or multi-omics techniques. In this Chapter, I will discuss the advantages

of such techniques and the challenges of applying them at the single-cell level.

As discussed previously, one goal of cell biology is the ability to make predictions about

cells along the information flow of the central dogma (Crick, 1970). However, gene
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regulation is a complex and cyclical process that involves multiple layers of control,

including TFs, DNA accessibility, histone modifications, and DNA methylation, among

others. Profiling only a single layer at a time will thus not give a comprehensive

picture of the regulatory processes we need to capture to truly understand how cells

work.

Multi-modal experiments in bulk have been useful in determining coarse regulatory

differences between conditions or different tissue types in the past. These experiments

can use uni-modal techniques on different subsets of the same sample, thus making the

extension to a multi-modal technique relatively straightforward (Ritchie et al., 2015a).

The analysis of these data typically involves the discovery of marginal associations

between the different modalities (see Section 1.4) to find candidates for causal

regulatory links. However, bulk assays only provide averages over cell populations and,

therefore, fail to capture heterogeneity within these cell populations. To understand

regulatory mechanisms, it is precisely this heterogeneity that is crucial. Furthermore,

gene regulation can be best studied when cells are not in a steady state but undergoing

dynamic changes due to changes in their environment. These systems can involve a

deliberate stimulus such as drug administration or naturally occurring changes, e.g.,

during embryonic development.

The application of multi-omics techniques to single-cell data can be done in the same

manner as for bulk techniques by aliquoting samples and subjecting them to uni-

modal assays (Stuart and Satija, 2019). However, there is no direct link between cells

in these experiments, and these datasets have to be integrated post-hoc, which can

be a challenge, depending on the features measured. If two unimodal techniques have

a (sub)set of shared features, this integration is possible with different computational

methods that perform so-called horizontal integration. However, if there are no shared

features, this integration becomes a very challenging task called diagonal integration.

Figure 1.7 overviews different analysis scenarios for single-cell multi-omics experiments.

For a comprehensive review of multi-omics analysis strategies, see Argelaguet et al.,

2021.
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Figure 1.7 | Different integration strategies for multi-omics data. a) Horizontal
integration is performed when the same set of features is observed in different experiments. b)
Vertical integration is performed when different sets of features are observed in the same cell.
c) Diagonal integration matches features and cells that do not overlap between experiments.
Figure generated by Max Frank, adapted from Argelaguet et al., 2021.

A better experimental setup for elucidating the regulatory relationships between

different modalities is one that profiles two or more modalities in one cell. Note that

the term multi-modal in this context is often used to distinguish assays measuring

multiple modalities in the same cell from multi-omics experiments that integrate uni-

modal assays in-silico (Argelaguet et al., 2021). These techniques are only emerging in

recent years and face a host of technical challenges. A fundamental problem for these
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assays is the limited amount of genetic, transcriptomic, and proteomic input material

present in a cell. Low coverage in unimodal assays can usually be compensated by

increasing the number of cells assayed, which allows the merging of similar cells to

more completely covered meta-cells. In multi-modal experiments, to establish links

between two features in different modalities, both features of interest have to be

covered in the same cell. Another problem is that most assays involve the destruction

of their input material, preventing the application of subsequent assays.

Figure 1.8 gives an overview of single-cell multimodal assays that combine measure-

ments of the transcriptome with genomic-, epigenomic- and proteomic assays. The

following paragraphs will give a brief overview of a selection of these assays.

Figure 1.8 | Overview of single-cell multimodal assays. Different technologies are
placed with respect to the molecular data they assay in addition to the transcriptome.
Techniques that assay more than two molecular layers, such as scNMT-seq are listed multiple
times. Each combination of modalities provides opportunities to study different biological
processes as described within the grey boxes. Figure generated by Max Frank, adapted from
Lee et al., 2020.
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Cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) (Stoeckius

et al., 2017) is a technique that can quantify transcriptomes and the concentration of

a limited number of cell-surface proteins in parallel. It does so by incubating cells

with antibodies that bind specific surface proteins and carry unique oligonucleotide

sequences. After washing away unbound antibodies, the oligonucleotides carried by

bound antibodies can be identified in a sequencing readout in conjunction with RNA

quantification. CITE-seq has been successfully applied to distinguish subpopulations

of immune cells that could not be distinguished by RNA-seq alone (Hao et al., 2021).

The technique is limited by the availability of antibodies for surface proteins of interest

and its inability to assay intracellular proteins.

Another set of multi-modal droplet-based technologies assays DNA accessibility and

nuclear RNA concentrations in parallel (Chen et al., 2019; Ma et al., 2020). This

method is also commercially available under the name 10X multiome kit. Here, nuclei

are incubated with the Tn5 transposase in bulk, as for a single-cell ATAC-seq workflow.

Transposed nuclei are then microfluidicly paired with gel beads containing two types

of oligonucleotide sequences, or oligos. One oligo will contain cell barcodes and a

sequence that can bind to the poly-A tail of mature mRNA molecules. The other

oligo contains barcodes and generic sequences that will pair with Tn5-cleaved DNA

fragments. Cells can then be pooled again, and two fractions are used for ATAC-seq

and RNA-seq. This allows the profiling of large numbers of cells at low cost, with

the drawback of reduced complexity at the single-cell level. This assay has recently

been applied to a dataset of mouse embryonic stem cells undergoing gastrulation

(Argelaguet et al., 2022).

Other techniques make use of the physical separation of the input material needed

to assay different modalities. One of the first applications that made use of this

was single-cell genome and transcriptome sequencing (scG&T-seq) (Macaulay et al.,

2015). Here, a cell’s mature messenger RNA (mRNA) is separated from its DNA

using biotinylated oligo-dT primers that bind the mRNA poly-A tail and can be

removed from the solution with magnetic beads. The RNA fraction can then be

subjected to standard single-cell RNA-seq protocols, while the DNA fraction can be

used for genetic or epigenetic assays. This protocol has various applications in the

study of gene-regulatory mechanisms. In the original study, the authors could directly

measure the impact of DNA copy number variations in a subpopulation of cells on

gene expression of genes on the same chromosome.

1.3.1 scNMT-seq

Single-cell nucleosome, methylation, and transcription sequencing (scNMT-seq) (Clark

et al., 2018) combines the ideas of the scG&T-seq (Macaulay et al., 2015) and NOMe-

seq protocols introduced in Section 1.3 (Fig 1.3.1). Cells are separated into wells and

incubated with a GpC methyltransferase as in NOMe-seq, methylating accessible GpC

sites. Then DNA is separated from mRNA as in the scG&T protocol. The mRNA
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fraction is assayed using the Smart-seq2 protocol (Picelli et al., 2014), a full-length

scRNA-seq protocol with high coverage of the transcriptome. The DNA fraction is

subjected to single-cell bisulfite sequencing, which carries information about both

DNA methylation and DNA accessibility.

Figure 1.9 | Overview of the scNMT-seq protocol. scNMT-seq involves the lysis of
cells and the methylation of accessible GpC sites by introducing a GpC methyltransferase.
The cytoplasmic fraction of mRNA molecules is assayed with the Smart-seq2 protocol.
The nuclear portion is assayed with single-cell bisulfite sequencing using the NOMe-seq
protocol. Separately evaluating CpG and GpC methylation allows the readout of endogenous
methylation and chromatin accessibility. Figure adapted from Clark et al., 2018

In the analysis of scNOMe-seq data, special care has to be taken when interpreting

ambiguous signals from the analysis. Cytosines in the CGC sequence context could be

methylated by both endogenous and exogenous M.CvPI methyltransferases. Therefore,

these sites are commonly excluded from the analysis altogether.

scNMT-seq thus provides a lot of parallel information about the cells assayed. The

biggest limitation of this technique is the cost associated with scaling this assay up to

large numbers of cells. While other droplet-based single-cell methods can compensate

for the lack of coverage in individual cells by scaling to hundreds of thousands of

cells, the analysis of scNMT data relies on maximizing the information extracted

from every cell assayed. This work contributes to the analysis of sparse multi-modal
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single-cell data that need careful consideration when designing algorithms. In the

next Section, I will discuss general approaches to analyzing multi-modal single-cell

data.

1.4 Integrative analysis of single-cell multi-modal data

As mentioned before, the term multi-modal data in the context of single-cell ex-

periments describes multiple layers of molecular data extracted from the same cell.

Each modality will consist of a set of features corresponding to a molecular layer in

the cell, resulting in a set of two or more cell-by-feature matrices. This allows the

linkage of these molecular layers via cell identity, which is also referred to as vertical

integration (Fig 1.7). Vertical integration typically aims to elucidate cellular processes

that determine the causative links between the assayed modalities. Since each cell

provides only a snapshot of these regulatory interactions, finding causative links

directly can be challenging. Instead, in the first step, researchers are often interested

in the co-variation of features, which can help to narrow down the space of causal

links and, in conjunction with prior biological knowledge, can produce hypotheses

about cellular mechanisms (Macaulay et al., 2017; Argelaguet et al., 2021).

Vertical integration methods can be categorized as local or global approaches. Local

analyses focus on specific associations between molecular features across different

layers, aiming to detect interactions between them. In contrast, global integration

utilizes the full range of measurements to identify broader cellular states, such as cell

cycle phase and pluripotency potential, in an unsupervised manner.

1.4.1 Global analysis

The power of global analysis is already apparent in uni-modal single-cell experiments,

where it can be applied to define cell types or order cells along a continuous biological

process. This is done with dimensionality reduction techniques, the most widely used

of which is principle component analysis (PCA) (Luecken and Theis, 2019). PCA

transforms high-dimensional data (in this case, high-dimensional in feature space) onto

a lower-dimensional space while maximizing the variance explained by the orthogonal

remaining axes. This transformation is linear, making principle components highly

interpretable but limited to detecting only certain (linear) sources of variation. Other

methods with similar matrix-factorization ideas have been successfully applied to

single-cell data, including Bayesian matrix-factorization that forms the basis of Multi-

omics Factor Analysis (MOFA) (Argelaguet et al., 2019a; Argelaguet et al., 2018a),

as well as canonical correlation analysis (CCA) (Butler et al., 2018) and others. All

these techniques can be combined with clustering algorithms to find groups of similar

cells or cell types without prior biological knowledge.

Global integration of multi-modal data utilizes unsupervised dimensionality reduction

methods with the same principle as PCA to define cellular states resulting from
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interactions between multiple genomic features and across modalities (Heumos et al.,

2023). MOFA is a Bayesian matrix factorization tool designed for this task (Argelaguet

et al., 2018b; Argelaguet et al., 2019a). It finds orthogonal axes of variation called

factors that are shared between modalities as well as those that are only present in a

single modality. CCA (Butler et al., 2018) can also be used for vertical integration,

however, with the limitation that it will prioritize sources of variation shared between

all modalities. Another approach is to generate a multi-modal nearest neighbor

graph that weighs the utility of each modality in each cell. This approach is called

weighted-nearest neighbor (WNN) (Hao et al., 2021) analysis and outputs a graph

that can be used for downstream visualization and clustering. These methods have

been shown to be able to resolve cellular states that would not have been resolved

by either modality alone. For example, WNN has been applied to CITE-seq data of

peripheral mononuclear blood cells to identify lymphoid subpopulations not detected

by scRNA-seq alone (Hao et al., 2021). Furthermore, there is also great potential

to identify regulatory links with global analysis. For example, MOFA identified a

broad set of lineage-defining enhancers during mouse gastrulation that regulates the

expression of important marker genes using scNMT-seq data.

However, the potential of these global methods to discover novel biology in an

unsupervised manner is complicated by several challenges. One challenge is that

most integration methods are designed with Gaussian likelihoods, meaning there is

an assumption of normality for the cell by feature matrices. This is often a valid

assumption for count data, e.g., after log transformation, but is not appropriate

for other modalities such as methylation, which is binary at the CpG level (Du

et al., 2010). Some methods, like MOFA, allow alternative likelihoods to address

this problem, but model performance can suffer compared to Gaussian likelihoods.

Different modalities can also have vastly different amounts of technical noise associated

with them, making assessing co-variation challenging.

Another problem is the definition of features as input. There are clearly defined

features for transcriptomics and proteomics (assuming alternative splicing and post-

translational modifications are ignored). Epigenetic measurements, however, often

lack defined features since the epigenomic landscape is not exhaustively mapped.

Therefore, these methods often rely on prior biological knowledge to define features of

interest. For example, DNA methylation features are often predefined by chromatin

marks for potential enhancers such as H3K27ac (Wang et al., 2008). All methylation

measurements within the boundaries of a feature are then aggregated to produce the

input matrix. If the boundaries of the features are incorrect, this leads to the inclusion

of uninformative CpG sites or the exclusion of informative CpG sites and, therefore,

a decrease in signal-to-noise ratio. In some cases, such as ATAC-seq, features are

defined in a data-dependent manner (Yan et al., 2020). For example, one standard

way of defining features for ATAC-seq is to sum up the signal of all cells and then run

a peak-calling algorithm, identifying regions with increased accessibility. This has the
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problem of potentially missing accessible DNA only present in rare cell populations.

To overcome this, another strategy is to first separate cell populations based on the

signal of tiled genomic windows and then run peak calling separately on clusters of

cells. Data-dependent feature identification makes it harder to compare the results of

different experiments because they work with a different set of features.

In general, global analysis of multi-modal data is a powerful way to get an overview of

a biological system of interest and to find major axes of biological variation. However,

to study detailed regulatory interactions, it is often necessary to develop models that

are specifically tailored to the mechanism of regulation of interest and that test links

between individual features across modalities directly. This approach to integration

is called local integration.

1.4.2 Local analysis

Local analysis is a different paradigm for the analysis of multi-modal data. Here, inter-

actions between different features in two or more modalities are explicitly investigated

in a supervised manner. Often, one can restrict the search space of these methods

by considering biological priors such as the genomic proximity of the features. For

example, when looking for gene-enhancer interactions, tests are often restricted to

certain distances of the regulatory element to the transcription start site of the gene.

In cis-expression quantitative trait loci (cis-eQTL) mapping, the same principle is

applied to filter out genes that are too far away from a variant of interest (Nica and

Dermitzakis, 2013). This is sensible and necessary since there would be a combinatorial

explosion of tests without filters, adding to the multiple testing burden.

When pairwise interactions between elements are tested, the test can be tailored to the

data modalities. For example, for the investigation of cis-eQTLs, linear mixed models

can be used specifically designed to deal with sparse information from single-cell data

(Cuomo et al., 2020).

Local analysis is often key to getting a detailed understanding into biological mech-

anisms. They can often include prior biological knowledge. For example cell-type

identity can be validated by the expression of known marker genes.

1.4.3 Combining global and local analyses

Another powerful approach is the combination of global with local analyses. This

is routinely done in single-cell RNA-seq assays, where global analysis will aid in

the unsupervised identification of cell types via clustering, followed by differential

expression analysis between these cell types for individual genes (Luecken and Theis,

2019). This allows the discovery of novel cell types or states and potential marker genes

that define their identity. Recently, several approaches have adapted this pipeline to

remove the need for clustering in this pipeline, testing for genes that co-vary with any

of the global axes of variation (Dann et al., 2022; Ahlmann-Eltze and Huber, 2024).
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This is an exciting avenue for experiments that study temporal or spatial biological

processes because these tests can be much more powerful in detecting continuous

changes in gene expression. For example, in developmental studies, cell identities

change gradually over time, which means that a clustering algorithm would introduce

arbitrary boundaries between states. One caveat of these approaches is that care

must be taken with the dual use of information since the input data for differential

expression testing will be the same (albeit a subset) data used to infer global cell

state.

In the case of finding cis-eQTLs in single-cell data, combining global and local analysis

can involve the integration of principal components from PCA to remove global effects,

similar to stratifying a population of human subjects. Furthermore, the unsupervised

clustering results in the global analysis might be used to find eQTLs that are cell-type

specific (Cuomo et al., 2022).

The same principles can be applied to multi-modal approaches (Argelaguet et al.,

2021; Heumos et al., 2023). However, they have the advantage that one modality can

be used for inferring cell states with global analysis, followed by the local analysis of

other modalities to find individual features that co-vary with the global state. This

approach avoids the double-dipping problem of uni-modal approaches. In general,

scRNA-seq is often best suited for inferring cell state since it has a fixed set of features

and is a fairly robust assay. RNA expression also sits in the middle of the information

flow paradigm of the central dogma, making it a good anchor to which to compare

most modalities. Epigenetic single-cell assays are often technically more complicated

with less well-defined features, requiring more refined local analysis.

An example of this type of analysis would be detecting DNA methylation changes

within tumor subpopulations. With a multimodal assay, RNA expression could be

used to classify cells as tumor-surrounding healthy cells or into subgroups of tumor

cells. Then, a test could be applied that finds genomic regions that are differentially

methylated between these groups of cells (Fan et al., 2022). Since DNA methylation

has a very different noise model, testing for differential methylation requires a tailored

test (Kapourani et al., 2021). I will discuss methods for detecting epigenomic changes

in the next Chapter.

1.5 Statistical methods to detect epigenomic changes

Methods for detecting epigenomic changes between conditions vary broadly based

on the input type. As discussed above, ATAC-seq provides a signal in the form of

peaks of chromatin accessibility (Buenrostro et al., 2013). The insertion frequency

of the Tn5 transposase and the resulting fragment sizes limit the resolution of this

technique. Resulting resolutions are typically on the 100bp scale, sufficient to detect

nucleosome positioning, but smaller events, such as TF binding, are harder to detect

(Bentsen et al., 2020). Furthermore, the output of ATAC-seq after peak finding is a
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sample by peak (in case of bulk assays) or a cell by peak count matrix (in case of

single-cell assays), allowing the adaptation of computational methods designed for

RNA-seq. There are several frameworks to analyze (single-cell) ATAC seq data, such

as ArchR (Granja et al., 2021), Signac (Stuart et al., 2021) and SnapATAC2 (Zhang

et al., 2024). These packages typically provide standard tests like the Wilcoxon Test

or logistic regression. Additionally, one can utilize popular purpose-built RNA-seq

differential testing packages such as DEseq2 (Love et al., 2014) or limma (Ritchie

et al., 2015b).

In the case of bisulfite sequencing-based assays, such as NOME-seq, the output data

will initially be a matrix of samples by CpG/GpC (in the case of bulk assays) or cell

by CpG/GpC (in the case of single-cell assays). In the single-cell case, this matrix

will be very sparse, with typical coverage of bisulfite sequencing in single-cells ranging

from 0.01-20% (Angermueller et al., 2016), and most entries will be either 0 or 1,

indicating methylation or no methylation. In the case of bulk, coverage is often higher

due to the increased amount of input material. Entries in the matrix will range from

0 to 1, indicating the fraction of methylated cells at this position in a given sample.

When testing for differential DNA methylation or DNA accessibility, researchers are

often not interested in the changes of single bases but are looking for segments or

regions in the genome that are changing. We will call these segments differentially

methylated regions (DMRs) or differentially accessible regions (DARs). This has

biological and technical reasons. Biologically, regulatory epigenetic processes will

typically involve a change across multiple bases in the genome. For example, reposi-

tioning one nucleosome will make 147bp accessible at once. DNA-binding proteins

that methylate or demethylate DNA will affect multiple nearby cytosines. Therefore,

the signal of close-by CpG or GpC sites will be correlated (Mayo et al., 2015). From

the technical side, testing all CpG or GpC sites in a mammalian genome comes with

an enormous multiple-testing burden, reducing the statistical power of these tests.

Therefore, methods that test for epigenetic changes with base-resolution data must

solve two problems:

• The definition of region boundaries within which epigenetic change occurs

• The statistical assessment of the significance and magnitude of change within

those regions

Most methods for detecting epigenomic changes with base resolution were designed

for bulk bisulfite-sequencing data. Recently, some specific models for single-cell

approaches have also been developed. The next Section will overview the existing

landscape of available methods.
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1.5.1 Bulk methods

1.5.1.1 Models that compute statistics on fixed genomic windows

These methods implicitly assume the methylation rate to be constant within these

windows and compute statistics on the aggregated counts of all CpG sites within

a region. This is a robust and fast way to test for differentially methylated regions

(DMR), but has the disadvantage that a correct list of candidate regions must

be known a priori. These methods include: IMA (Wang et al., 2012a), COHCAP

(Warden et al., 2013), DMAP (Stockwell et al., 2014), methylSig (Park et al., 2014)

and methylKit (Akalin et al., 2012)

1.5.1.2 Models that compute statistics on individual CpG sites

These methods often use variations of Fisher’s exact test (Fisher, 1922) or beta-

binomial regression to compute significance for loci. DMR can then be computed

by aggregating nearby significant CpG sites. This has the issue that there is no

proper FDR control on the region level. Aggregation can broadly be characterized by

aggregation with heuristics and aggregation by smoothing of methylation rates.

Methods that use aggregation heuristics have more complicated FDR control models

than models that test fixed windows. Since the methylation data is both used to define

and test DMR’s, care must be taken not to “double dip”. A fundamental problem

with these methods is that, given the sparsity of single-cell data, it is often impossible

to calculate any meaningful statistics on individual CpG sites, which renders most

aggregation heuristics invalid. Furthermore, they are usually designed with replication

in mind, prohibiting application to most single-cell datasets. Examples of this type of

methodology are Methylpy (Schultz et al., 2015) and DSS (Feng and Wu, 2019).

Methods that compute statistics on smoothed estimates of methylation rates make

use of the fact that information can be shared between neighboring CpG sites. Thus,

they average the methylation signal with some smoothing or clustering operation

before calculating statistics. These methods include BSsmooth (Hansen et al., 2012),

Metilene (Jühling et al., 2016), and BiSeq (Hebestreit et al., 2013).

1.5.2 Single-cell methods

Although it might seem straightforward to adapt the bulk methodologies for detecting

DMRs for single-cell data, many of these methods contain heuristics for filtering

low-coverage data on the individual CpG level that often does not allow their use in

sparse single-cell methylation data. One strategy to overcome this sparsity problem is

to impute the methylation state of CpG sites that have missing information. The two

main methods designed to impute single-cell DNA methylation at base resolution

are deepCpG (Angermueller et al., 2017) and MELISSA (Kapourani and Sanguinetti,

2019) (see Section 1.5.2.1). Another approach is the aggregation of multiple CpG
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sites in regions of interest that are defined a-priori. This approach makes it feasible

to adapt the use of bulk methods such as Fisher’s exact test or DSS (Feng and Wu,

2019). It is also used in the scMET method (see Section 1.5.2.2).

1.5.2.1 Imputation models

DeepCpG DeepCpG (Angermueller et al., 2017) is a neural network-based method

that uses DNA sequence information in conjunction with neighboring CpG site

methylation states of all cells in the dataset. It was tested on single-cell BS-seq of

mouse embryonic stem cells by subsampling the data. It was able to predict global

methylation states with high accuracy and precision (area under the receiver-operating

characteristic curve (AUC) > 0.85). This was a significant improvement compared to

other methods that did not use DNA sequence information or only used information

from the same cell. When assessing the imputation performance in different genomic

contexts, prediction power was the highest in promoter regions and exons. This is

expected since these elements are typically either fully methylated or unmethylated.

In enhancer regions, marked by H3K27ac or H3K4me1, performance dropped to

AUCs of 0.6-0.8, while still outperforming simpler methods. This is also expected

since these regions are associated with increased methylation variability.

MELISSA MEthyLation Inference for Single-cell Analysis (MELISSA) (Kapourani

and Sanguinetti, 2019) is an imputation tool for single-cell BS-seq data that leverages

the combination of a global analysis with a local analysis. It consists of a Bayesian

hierarchical model that jointly learns smooth representations of methylation rate in

genomic regions of interest and clusters cells based on the genome-wide patterns of

these representations. Thus, it shares information between neighboring CpG sites,

thanks to the smoothing of methylation rates in genomic coordinates, and between

grouped cells in global methylation space. It had improved precision and accuracy

compared to similar methods that did not share information between cells in simulated

data and was able to cluster cells correctly. When evaluated on single-cell BS-seq of

mouse embryonic stem cell data, it had a similar performance to DeepCpG without

the DNA sequence information. It performed slightly worse than DeepCpG with DNA

sequence, with considerably less computational complexity. Prediction performance

also decreased in the context of active enhancers, similar to DeepCpG.

1.5.2.2 Differential testing

To my knowledge, there is currently only one tool for differential methylation testing

explicitly designed for single-cell BS-seq data, called scMET (Kapourani et al., 2021).

scMET scMET is a Bayesian framework that tests for both differential mean and

variability of methylation between groups of cells in single-cell BS-seq data. It fixed

genomic regions of interest as an input to overcome sparsity issues within single-cell

data. For each region of interest, it fits a beta-binomial model of methylation rate
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that has an explicit overdispersion component describing biological variability. Thus,

it can also be used to detect highly variable regions in heterogeneous populations

of cells, which can be used for downstream global analyses. Interestingly, when

comparing differential mean methylation analysis between groups of cells, there was

no substantial power benefit of this model versus a Fishers-exact test or the beta-

binomial model implemented by DSS. Interestingly, both scMET and Fishers-exact

test show massively varying false positive rates depending on the number of cells per

group and the average number of CpG sites per region, indicating that neither test is

calibrated.

scMET has the limitation that it requires fixed genomic regions as an input to the

model, making it reliant on accurate annotations of regulatory elements in the genome

that are expected to change their methylation rate. Furthermore, it assumes that

within a genomic region of interest, methylation rate is constant within a cell which

might not always be the case. A model that is able to take imperfect or no prior

annotation of genomic regions as input would not have these shortcomings but is

challenging to implement since it would have to combine region finding/refinement in

parallel with differential testing.

Another limitation of all current models that test for differential methylation is that

they are designed to test for methylation changes between groups of samples or

groups of cells. However, in many dynamic biological systems, methylation changes

will happen continuously over space or time. With the emerging availability of multi-

modal single-cell assays, these continuous changes could, in theory, be tracked with

great resolution. However, the current methods are not designed to model methylation

in these cases.

1.6 Aims of this Thesis

In the previous Section, I outlined the limitations of current methods to model

epigenetic heterogeneity in single-cell experiments. These limitations are especially

pronounced if the observed biological system is undergoing continuous changes, such

as a developmental process. As introduced in Section 1.4.1, global analysis strategies

can be used to identify continuous biological processes in single-cell RNA sequencing

datasets without the need for large numbers of experiments. This allows for the study

of continuous gene expression changes across developmental processes. Single-cell

multimodal technologies further open up the possibility of studying the epigenetic

changes that go hand in hand with transcriptomic changes. Therefore, multimodal

single-cell technologies have the potential to study the gene regulatory landscape that

determines cell fate during development. However computational tools that facilitate

these investigations are not well established.

In this thesis, I want to combine the concept of global analysis that has been well-

established for single-cell RNA sequencing with a local analysis approach in the highly
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sparse epigenetic modalities of multimodal single-cell experiments. Section 1.7.1 will

explain how pseudotime inference can be used to assign every cell a position along

a developmental trajectory. To then model epigenetic changes across these develop-

mental trajectories, I aimed to develop a local model that could describe continuous,

non-linear changes in DNA methylation and chromatin accessibility of regulatory

genomic regions. This is complicated by the highly sparse readout that single-cell

epigenomic profiling technologies produce (see Section 1.3). I therefore wanted to

develop a model that makes use of the idea of sharing information between cells

and neighboring genomic loci while still providing rigorous statistics for differential

testing. In this thesis, I developed a Gaussian process (GP) model that satisfies these

criteria, called GPmeth. I introduce GPs in Section 1.8 and describe the detailed

considerations and derivation of the model in Chapter 2.

1.7 Biological motivation of the GPmeth model

1.7.1 Modeling continuous changes in single-cell RNA-seq studies

1.7.1.1 Global analysis

As discussed in Section 1.4, single-cell analysis provides the opportunity to discover

structure in populations of cells in an unsupervised manner. This often involves

dimensionality reduction, which was introduced in Section1.4.1. This type of global

analysis typically leads to one of two scenarios, depending on the biological system

that is studied.

1. Firstly, clearly distinct populations of cells that can be clustered into cell types

(Fig 1.10, bottom). A typical example of this is the study of blood cells in adult

humans, where different immune cell types, such as B-cells and T-cells, are

clearly distinguished by clustering. This analysis can also lead to the discovery

of previously unknown cell types.

2. Secondly, single-cell assays also have the potential to reveal a snapshot of a

developmental process (Fig 1.10, top). Even though a single experiment will

typically assay cell populations that were extracted at a single time point

during a developmental process, there is often enough natural variation in the

differentiation speed of individual cells that developmental trajectories can

be faithfully reconstructed. For single-cell RNA-seq (scRNAseq) data, many

algorithms have been developed that detect axes of continuous variation (Saelens

et al., 2019; Andrews et al., 2021). These methods are generally referred to as

pseudotime analyses.
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Figure 1.10 | Unsupervised global analysis strategies for single-cell RNA-seq
studies. Unsupervised global analysis allows the assignment of cells to clusters that represent
distinct cell states or types or onto a position along a developmental trajectory. Figure
adapted from Stegle et al., 2015 with permission of the authors.

1.7.1.2 Psedudotime analysis

The aim of pseudotime analysis is to map cells along a developmental/differentiation

trajectory. Most pseudotime analysis tools employ two main approaches. The first

method involves utilizing dimensionality reduction techniques to uncover a low-

dimensional ’manifold’ where the cells are situated, similar to the dimensionality

reduction for discovering cell types. Cells are then ordered in pseudotime based

on a neighborhood graph in this manifold. Well-known methods employing this

strategy are Monocle (Cao et al., 2019) and DPT (Haghverdi et al., 2016). The

second approach revolves around employing unsupervised clustering to group cells,

followed by connecting the clusters and projecting individual cells onto the resulting

branches. TSCAN (Ji and Ji, 2016) and Mpath (Chen et al., 2016) are examples

of methods that follow this approach. Cluster-based pseudotime methods exhibit

higher accuracy in scenarios where there is an uneven distribution of cells along the

trajectory, such as when certain cell states are more prevalent or consistently captured

compared to others, or in large-scale developmental hierarchies. On the other hand,

manifold approaches excel when there is a uniform sampling of cells throughout

the transition and when examining intricate details of individual transitions. The

main goals of scRNA-seq pseudotime analyses are to establish lineage relationships

during organismal development. This can uncover which cell types give rise to which

differentiated tissues and the transition states that cells have to go through.
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1.7.1.3 Local analysis

After global analysis, the next step is to identify genes that are differentially expressed

across the studied cell population through local analysis to reveal biologically relevant

changes. The appropriate statistical test for this depends on the scenario that was

encountered in the global analysis.

If there are clearly distinct cell populations in the data, the application of statistics

that are developed to compare bulk experiments is appropriate. These include methods

such as the Wilcoxon test (Wilcoxon, 1945), or DEseq (Love et al., 2014).

To find temporally variable genes along a differentiation trajectory, there are again

two main approaches for differential testing (Fig 1.11). The first approach is to define

cutoff values in pseudotime to group cells into discrete temporal stages. This approach

enables the application of differential testing methods to detect marker genes for

cell-type clusters mentioned above. However, if changes in gene expression are truly

continuous, grouping cells will necessarily sacrifice some statistical power for the test.

This can be seen in the upper panel of Fig 1.11: There are some cells close to the

arbitrarily introduced cutoff point that have intermediate expression values. These

cells will decrease the difference in means between the two populations.

The problem can be overcome by using a model that takes pseudotime as a continuous

covariate. The first choice of models to work with continuous covariates are linear

models, but pseudotemporal trajectories of gene expression are not guaranteed to be

linear. Thus, nonlinear models have been developed that calculate test statistics by

model comparisons (Fig 1.11).

Figure 1.11 | Differential testing with continuous covariates. This figure shows the
difference between discrete tests (top row) and continuous tests (bottom row) for changes in
RNA expression with a continuous covariate. Figure generated by Max Frank.

Examples of these models are GPfates (Lönnberg et al., 2017) , GPcounts (BinTayyash

et al., 2021), Monocle (Trapnell et al., 2014; Qiu et al., 2017), and tradeSeq (Van

den Berge et al., 2020). GPfates implement a GP model with a branching kernel

that can pinpoint the divergence of gene expression for trajectory branching events.

GPcounts implements a GP model with a zero-inflated negative-binomial likelihood
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that is better suited to count-based scRNA-seq data and also has a branching kernel.

Monocle fits an additive model to the count data to find genes associated with

branching events. TradeSeq fits generalized additive models to gene expression data

and provides a range of tests for different biological questions.

The same principles outlined above also apply to single-cell multi-modal data. Global

analysis of one modality can reveal developmental trajectories and order cells along

pseudotime. Then, other modalities can be queried for features that change along a

pseudotemporal axis. Compared to the previous scenario, this also has the advantage

of avoiding the use of the same information for global and local analysis. However,

detecting epigenetic changes comes with a particular set of challenges (see Section

1.5). The two main challenges are:

1. Epigenetic modalities can have fundamentally different noise models compared

to count-based readouts that one gets with scRNA-seq. The techniques that

provide base-pair resolution of DNA methylation and chromatin accessibility,

such as scNMT-seq will provide a binary signal.

2. There is no clearly defined set of features to test for. With RNA-seq, genes

can serve as a clearly defined unit of aggregation for reads. In contrast, for

epigenetics there is no gold-standard database of regulatory elements that can

be tested for.

The GP model that I will propose in this thesis aims to address these challenges.

1.7.2 Modeling continuous changes in single-cell DNA methylation

measurements

Measuring DNA methylation and chromatin accessibility at base-pair resolution in

individual cells or even on individual molecules (Krebs et al., 2017) has advantages

over coarser techniques such as scATAC-seq. With these techniques, it is possible to

not only quantify nucleosome occupancy of DNA but also the much smaller footprint

of TFs, which allows the study of the cooperative binding of multiple TFs (Sönmezer

et al., 2021) or the effects of DNA methylation on TF binding (Kreibich et al., 2023).

However, because of the limited amount of input DNA, base-pair resolution single-cell

techniques provide highly sparse data and need tailored models to deal with this

sparsity.

Fundamentally, at a specific cell and CpG site, DNA methylation can exist in one

of four states. Either both alleles at the position are methylated, both alleles are

unmethylated, or only the paternal or maternal allele is methylated. Note that, in

theory, the cytosines on opposing strands of the same DNA molecule could also carry

different methylation signals, but this is exceedingly rare in mammalian cells, since

the dedicated DNA methyltransferase DNMT1 recognizes hemimethylated CpG sites

(Goll and Bestor, 2005; Klose and Bird, 2006). Allele-specific methylation (ASM) is a
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more common occurrence and is often studied in combination with QTLs (Abante

et al., 2020). From a genome-wide perspective, the frequency of ASM is still rather

low. For example Do et al., 2016 found that 2% of all regions that could be annotated

with haplotype information had significant differential methylation rates in multiple

human tissues. The confident detection of ASM from bisulfite sequencing data requires

sufficient read depth for both alleles and is thus often prohibitive with sparse single-

cell data. Therefore, methylation rate of CpG site i in an individual cell j is often

modeled as a Bernoulli distributed variable

yij = Bern(ρij) (1.1)

where ρij is the unknown true methylation rate and y is the observation in the data.

ρij can be described with a Bernoulli distribution when ignoring hemimethylation.

1.7.2.1 Genomic covariances

As mentioned previously, the cell-by-CpG site matrix produced by these techniques

will be sparse, with 0.1-10% of entries covered. This makes the direct analysis of

individual features challenging. On the one hand, this can be overcome by using the

fact that cells are not independent measurements but can be linked by proximity

on a low dimensional manifold, pseudotemporal ordering or neighborhood graph.

This is the reason that continuous models have increased statistical power to detect

changes. The other important consideration is that the signal of proximal CpG or

GpC sites on a chromosome is not independent. The footprint of a nucleosome spans

147bp, which, with an average occurrence of GpC sites every 16bp, will affect 9

GpC sites at once. TF footprints are smaller but still can affect multiple GpC sites.

The co-variance of endogenous CpG methylation will depend on multiple factors.

First, the average distance of neighboring CpG sites will vary widely throughout the

genome. Genome-wide, there is a depletion of CpG sites, with an average distance

of 100bp between neighboring CpGs (Saxonov et al., 2006), whereas in CpG islands

the average distance will only be ∼10bp (Gardiner-Garden and Frommer, 1987).

The spatial correlation of methylation rate between CpG sites also varies based on

genomic context. Zhang et al., 2015 found that there is a general decay of correlation

to genome-wide background levels at a 400bp distance. It is not entirely clear what the

biological underpinnings of this observed local correlation are, but it is plausible that

when a methyltransferase binds to a CpG site, it is more likely to bind to neighboring

CpG sites afterwards.

In summary, there are two key insights that motivate the formulation of the GPmeth

model in the next section

Key insight 1 Epigenetic features measured in individual cells are not independent

measurements but vary smoothly with biological processes
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Key insight 2 Methylation rate and chromatin accessibility measured at base-pair

resolution are not independent measurements but vary smoothly across the

genome

One of the aims of this work is to provide a model that relaxes the requirement for

the a-priori knowledge of exact region annotations by allowing for smoothly variable

methylation rates within regions of interest while being able to make use of single-cell

multimodal assays to model continuous temporal changes in methylation rate (see

Chapter 2). The basis for this model are GPs (Rasmussen and Williams, 2006). The

next Section will introduce the methodology behind GPs and showcase some of their

applications.

1.8 Introduction to Gaussian Process models

In this thesis, I will propose a method to detect epigenetic changes based on single-

cell assays. The core of this method is a non-linear regression of the methyla-

tion/accessibility rate over time and across the genome. While linear regression

is standard in many statistical methods, including detecting epigenetic changes, non-

linear regression typically comes with additional challenges of potential overfitting

of the data. GPs have been used in the past to model non-linear changes in gene

expression for both bulk and single-cell data (Stegle et al., 2010; BinTayyash et al.,

2021) and have many desirable properties for this application. This Section is meant to

provide a brief technical introduction to GPs and their advantages and disadvantages

for the models discussed in this Thesis. For a thorough introduction, see Rasmussen

and Williams, 2006.

1.8.1 Introduction to Gaussian Processes

The formal definition of a Gaussian process (GP) is a collection of random variables,

any finite number of which have a joint Gaussian distribution (Rasmussen and

Williams, 2006). Informally, one can think of GPs as a distribution over functions

that, when evaluated at any point, will have a joint Gaussian distribution.

GPs are fully specified by a mean function µ(x) :

µ(x) = E[f(x)] (1.2)

and a covariance function or kernel k(x,x′):

k(x,x′) = Cov[f(x), f(x′)] (1.3)

Often, it can be assumed that the mean is zero after simply subtracting the data

mean from the input. This leaves the GP fully specified by its kernel, which is where

the model can be constrained with a prior of choice. The choice of kernel represents

assumptions about the data that is modeled, as will be shown in Section 1.8.2. The
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comparison of the data fit of different covariance functions can then be used to

validate those assumptions (see Section 1.8.6).

The full GP will be denoted as:

f(x) ∼ GP (µ(x), k(x,x′)) (1.4)

This means that any set of random variables f(x) will be jointly Gaussian with mean

and covariance specified by the mean function and kernel, respectively. Any finite

realization of this process at specified points x is a multivariate normal distribution.

1.8.1.1 Marginal likelihood

GPs allow us to compute key quantities, such as the marginal likelihood of input data,

analytically given the above-specified model. This is an important property because

it allows the optimization of the hyperparameters θ of the model with respect to a

set of input data. It also allows the comparison of the likelihood of different models

to determine the most appropriate model structure (see Section 1.8.6). The marginal

likelihood of a GP for a set of input data [f(x1), f(x2), ..., f(xn)] = [y1, y2, ..., yn] = y

is the integral of the likelihood times the prior

p(y|X, θ) =
∫

p(y|f ,x, θ)p(f |x, θ)df (1.5)

where X = [x1,x2, ...,xn] are the locations of the input data. Note that we are

marginalizing over the possible function values f , hence the term marginal likelihood.

I listed the hyperparameters θ explicitly here to show that they need to be given to

compute the marginal likelihood. In the case of Gaussian likelihood, this integral can

be evaluated explicitly, and the result is often given in logarithmic form as:

logp(y|X, θ) = −1

2
log |Σ| − 1

2
(y − µ)⊤Σ−1(y − µ)− n

2
log(2π) (1.6)

where X are the locations of the inputs, θ are the hyperparameters of the model (see

Section 1.8.2), and Σ is the covariance matrix specified by the kernel and evaluated at

the inputs such that Σi,j = k(xi, xj). The marginal likelihood consists of three terms

that can give the optimization process some desired properties. Intuitively, the first

term −1
2 log |Σ| penalizes model complexity, where low covariances between the inputs

lead to a larger penalty. The second term is dependent on the data and encourages

the model fit. The third term does not depend on the data or hyperparameters and

is just a constant normalization term. GPs thus have a natural property of balancing

model complexity against fit to the data.
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1.8.1.2 Hyperparameter optimization

By optimizing the marginal likelihood with respect to θ, we can find optimal hy-

perparameters of the model. This can be done with gradient-based optimizers (see

Rasmussen and Williams, 2006, Chapter 5).

1.8.1.3 Model predictions

After optimizing the hyperparameters θ of the GP model, we can ask it to predict

values at unseen locations. This prediction will not be a point estimate but a Gaussian

distribution, which we can use to compute confidence intervals for each output. The

predicted distribution at an unseen input location x∗ is given by:

p(f(x∗)|X,y, θ) =N(µ(x∗) + k(x∗,X)k(X,X)−1(f(X)− µ(X)),

k(x∗, x∗)− k(x∗,X)k(X,X)−1k(X, x∗))
(1.7)

Where X are the locations of the training data. This is the posterior distribution of

the model, which can be evaluated at any location. If we look closer at the variance

term, we can see that it is equal to the prior variance at location x∗ minus a positive

term that shrinks the variance depending on the training data.

This will give the posterior conditioned on noise-free function values y. In the real

world, input data typically does not correspond to the function values themselves but

noisy realizations of them. If we assume that the measurement errors are independent

and identically distributed (i.i.d.) Gaussian, we can write

y = f(x) + ε (1.8)

where ε is a i.i.d Gaussian with variance σ2n . The conditional distribution then

becomes

p(f(x∗)|f(X)) =N(µ(x∗)+

k(x∗,X)[k(X,X) + σ2nI]
−1(f(X)− µ(X)),

k(x∗, x∗)− k(x∗,X)[k(X,X) + σ2nI]
−1k(X, x∗))

(1.9)

This is the key predictive equation for GP prediction. From this, one can sample

from the posterior, calculate the mean and variance at any location x∗, and calculate

confidence intervals for the predictions.
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1.8.2 Encoding assumptions about the data using covariance func-

tions

Kernels are the positive definite functions that define the covariance between two

inputs x,x′. Using different functions for the kernel is a way to impose restrictions

on the prior GP that correspond to assumptions about the data.

1.8.2.1 Base Kernels

Some of the most commonly used kernels are listed below and depicted in Figure

1.12.

Linear Kernels. The linear kernel constrains the GP to produce linear functions.

GPs with a linear kernel are equivalent to Bayesian linear regression (Rasmussen and

Williams, 2006). The kernel function is given by:

k(x, x′) = σ2f (x− c)
(

x′ − c
)

(1.10)

A model with this kernel has two so-called hyperparameters. σ2f is the kernel variance

that determines the amplitude of change of the function. In the linear case, this

corresponds to the slope. The second hyperparameter c determines the intercept of

the function.

Constant Kernels. The constant or bias kernel is the simplest kernel that produces

constant outputs.

k(x, x′) = σ2f (1.11)

The output of this kernel does not depend on the input and will simply be

f(x) = c; c ∼ N(µ(x), σ2f ) (1.12)

Matérn Kernels. The Matérn family of kernels produces functions with different

degrees of local smoothness. Their covariance function is specified by:

k(x, x′) = σ2
21−ν

Γ(ν)

(√
2ν

(x− x′)

ℓ

)ν

Kν

(√
2ν

(x− x′)

ℓ

)

(1.13)

where Γ is the gamma function, and Kν is the modified Bessel function of the second

kind. ν determines the smoothness of the function produced and is usually fixed

to one of 1
2 ,

3
2 ,

5
2 . The higher ν, the smoother the resulting function will get, and

the resulting function will be ν − 1 times differentiable. The hyperparameters of

this kernel are σ2, which is called the kernel variance, and ℓ, which is the kernel

lengthscale. The lengthscale of a kernel is important in specifying the spatial scale
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of variation that a resulting function will have. Large lengthscale kernels produce

functions that vary slowly over time or space.

Squared-Exponential Kernels. The squared-exponential (SE) kernel is a special

case of the Matérn family of kernels where ν → ∞. The covariance function then

simplifies to:

k(x, x′) = σ2f exp

(

−(x− x′)2

2ℓ2

)

(1.14)

with the two hyperparameters σ and ℓ as before specifying the amplitude and width

of the kernel.

Periodic Kernels. Periodic kernels can be used to express prior expectations

of repeating the behavior of functions. The covariance function can be derived by

mapping inputs to a base kernel through the transformation u = (cosx, sinx). The

result for a base SE kernel (MacKay, 1998) is given by:

k(x, x′) = σ2f exp

(

− 2

ℓ2
sin2

(

π
x− x′

p

))

(1.15)

again with σ2 and ℓ as variance and lengthscale hyperparameters, plus a third

hyperparameter p that determines the period of the function.
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Figure 1.12 | Examples of kernels for Gaussian processes. Shown are the kernel
functions (left column), functions sampled from the GP prior (middle column) and examples
of the GP posterior (right column) where the blue line represents the predictive mean of the
model and the shaded area is the 95% confidence interval. Figure generated by Max Frank.

These base kernels allow us to put different constraints on the predictions that a

GP can make. This is useful if there is prior knowledge about the data-generating

process. For example, when modeling DNA methylation rate over time, an assumption

of smoothness is reasonable, but a linear change of methylation rate over time is

probably too restrictive. Therefore, a kernel from the Matérn family should be a good

choice.
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1.8.2.2 Combining kernels

Kernels can also be combined to express expectations about functions that mix

multiple elements of these base kernels. Two fundamental ways of combining kernels

are multiplication and addition. This can be done for kernels that operate on the

same input dimension or kernels that operate on different input dimensions.

First, I will discuss combining kernels on the same input dimension. The addition

of kernels expresses the expectation that the function we want to model is a sum of

functions. For example, global temperature could be expressed as a sum of a long-term

SE trend that reflects the impact of climate change and a periodic trend that reflects

seasonal changes. An example of such a model is depicted in Figure 1.13 (bottom

row).

Multiplying kernels produces functions that can be thought of as an AND combination

of the base kernels. If one of the functions is 0 the result will always be 0, which means

that one kernel can be a gating function for the other kernel or control its amplitude.

For example, the combination of a linear and a squared exponential kernel will produce

a function with increasing variance (Fig 1.13, second row). Combining linear kernels

through multiplication yields polynomial kernels (for example a quadratic kernel in

Figure 1.13, top row).
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Figure 1.13 | Shown are the kernel functions (left column) and functions sampled from the
GP prior (right column). The top two rows are examples of multiplicative combination of
kernels, the bottom two rows are examples of additive combinations. Figure generated by
Max Frank.

Multidimensional Kernels GPs are not limited to a single input dimension but

can model functions that predict multiple dimensions. This can be done by combining

kernels that are defined on different dimensions either additively or by multiplication

(Fig 1.14). For example for a two-dimensional process:

k(x,x′) = k1(x1, x
′

1) + k2(x2, x
′

2) (1.16)
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where the subscript indicates the active input dimension of the respective kernel. For

multiplicative combination:

k(x,x′) = k1(x1, x
′

1)× k2(x2, x
′

2) (1.17)

Figure 1.14 | Two one-dimensional kernels can be combined to form a two-dimensional
kernel by addition (top row) or multiplication (bottom row). Figure generated by Max Frank.

When combining kernels, the hyperparameters of the unidimensional kernels can

either be constrained to be shared across kernels or free to be trained individually. A

multiplicative kernel with individually varying hyperparameters is also sometimes

referred to as an automatic relevance determination (ARD) kernel. This kernel is

capable of assigning very long lengthscales to input dimensions that do not have any

structured variability, labeling it irrelevant.

With additive kernels, one expresses the concrete assumption that the function to be

modeled is the sum of functions of the individual kernels. This makes models less

flexible, but more capable of extrapolation in high dimensions if the assumption is

correct. Figure 1.14 shows examples of SE kernels that are combined multiplicatively

or additively. Note that the additive kernel has higher covariance further away from

the center, although both kernels have the same hyperparameters.



1.8 Introduction to Gaussian Process models 41

Figure 1.15 | The (top row) shows the kernel function (left) and a sample of the kernel
(right) for an additive SE kernel. The (bottom row) shows the same for a multiplicative kernel.
Figure generated by Max Frank.

1.8.3 Non-Gaussian likelihoods

So far, we have assumed that the input to a GP are noisy observations with Gaussian

i.i.d. noise of a real-valued underlying function. However, GPs can also be used

to model data that does not have a Gaussian likelihood assumption. For example,

GP regression can be made more robust to outlier observations by using a Student’

t-distributed noise model (Neal, 1997; Stegle et al., 2010). When models have a non-

Gaussian likelihood, their posterior is no longer analytically tractable. This requires

the use of approximate inference techniques to calculate the posterior process and to

train the GP. There are different inference techniques available such as the Laplace

Approximation (Rasmussen and Williams, 2006), Expectation Propagation (Minka,

2001), Markov Chain Monte Carlo (Neal, 1997), and more recently, Variational Infer-

ence (Titsias, 2009; Hensman et al., 2013). These methods compute an approximation

to the marginal likelihood of the marginal likelihood of the model.



42 Introduction

1.8.3.1 Classification

Another data type where Gaussian likelihoods are not appropriate is categorical data.

Here, inputs are part of one of C classes. In the case of C = 2, we have the case

of binary classification. GPs can be used to predict class probabilities for unknown

input locations. To turn GP regression into a binary classifier, the idea is to use a

GP prior on a latent function that is defined in the domain (−∞,∞), and "squash"

it through a mapping function π(x) (Fig 1.16). The result of the resulting function is

the probability of the class label being in class 1:

π(x) = p(y = 1|x) (1.18)

There are two main mapping functions π that are used are π(x) = Θ(x), which is the

cumulative function of a standard Normal distribution, and π(x) = 1/(1 + e−z), the

logistic function.

Figure 1.16 | The left panel shows three samples drawn from a GP with a squared-
exponential kernel. The right panel shows the corresponding "squashed" functions that are
obtained by mapping π(x) = Θ(f(x)). Figure generated by Max Frank.

The inference of this model can be divided into two steps. First, the distribution of

the latent variable can be computed for arbitrary time points x∗

p (f∗ | X,y,x∗) =

∫

p (f∗ | X,x∗, f) p(f | X,y)df (1.19)

Then, to produce predictions, the distribution over the latent f∗ is mapped to the

output space of y with the probit link function

π̄∗ ≜ p (y∗ = 1 | X,y,x∗) =

∫

Φ (f∗) p (f∗ | X,y,x∗) df∗ (1.20)
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For a derivation, see Rasmussen and Williams, 2006. As mentioned above, the integral

for the latent distribution is no longer analytically tractable because of the non-

Gaussian likelihood and has to be approximated. I will give a brief overview of the

Variational Inference approach to this approximation here. The idea of variational

inference is to approximate the non-Gaussian term p(f | X,y) with a variational

distribution qψ(f) that is Gaussian and parametrized by a set of variational parameters

ψ. The variational parameters are optimized so that the variational distribution is

close to the original distribution in terms of the Kullback-Leibler divergence.

KL (qψ(f)||p(f | y,X)) =

∫

qψ(f) ln
qψ(f)

p(f | y,X)
(1.21)

If we apply bayes rule to p(f |y,X) and rearrange the equation we get:

ln p(y | X)−KL (qψ(f)||p(f | y,X)) =

∫

qψ(f) ln p(y | f , X)df −KL (qψ(f)∥p(f))
(1.22)

The right-hand side of this equation is referred to as the Evidence lower bound or

ELBO. The ELBO is guaranteed to be smaller than or equal to the likelihood since

the KL term on the left-hand side is positive or zero by definition. Thus, maximizing

the right-hand side of the equation with respect to the variational parameters ψ will

minimize the KL divergence. In practice, the hyperparameters of the model can also

be optimized in conjunction with the variational parameters.

We can now substitute the variational approximation to the posterior at unseen

prediction points x∗ to make predictions:

π̄∗ ≜ p (y∗ = +1 | X,y,x∗) =

∫

Φ (f∗) qψ(f∗)df∗ (1.23)

Fortunately, the mapping of the latent function can be computed explicitly when

using a probit link since qψ(f∗) is a Gaussian. The integral of a product of a standard

cumulative Gaussian Φ and a Gaussian evaluates to

∫

∞

−∞

Φ(x)N
(

x | µ, σ2
)

dx = Φ

(

µ√
1 + σ2

)

(1.24)

Where we can set µ to the mean and σ2 to the variance of the latent posterior process.

This gives the predictive rate parameter at test points. Notice that this is not the

same as just taking the link of the mean of the latent posterior since the distribution

in output space is not symmetric around its mode anymore.

1.8.4 Limitations of Gaussian Processes

While GPs offer a convenient way to express assumptions about data, there are also

some drawbacks that need to be considered when working with this class of model.
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Firstly, the computational complexity of computing the posterior of a GP is O(N3) in

time and O(N2) in memory, which prohibits the direct application of GPs to datasets

larger than 10.000 data points without specialized hardware. Fortunately, there has

been progress to speed up inference with sparse versions of GPs (Hensman et al.,

2013). These inference schemes have been implemented in a number of libraries (GPy,

2012; Matthews et al., 2017; Gardner et al., 2021).

Secondly, using non-Gaussian priors for GPs necessitates the approximation of the

posterior process. One efficient way of approximating the posterior is with Variational

Inference (VI). Instead of calculating the posterior directly, VI makes use of an

approximate Gaussian distribution that is optimized to be close to the intractable

posterior in terms of its Kullback-Leibler divergence (KL). Thus, instead of calculating

the likelihood of the model, one calculates an approximate posterior with an evidence

lower-bound (ELBO) with respect to the hyperparameters. This ELBO is the lower

bound of the log marginal likelihood of the true posterior process. There is no

guarantee that the ELBO is close to the theoretical log-likelihood that could be

reached with more expensive methods such as Monte-Carlo sampling, but in practice,

it is often accurate enough to work with these models.

1.8.5 Overfitting

As discussed in Section 1.8.1.1, GPs have an inbuilt penalty term for more complicated

model structures. This is because we integrate over the complete hypothesis space

to calculate the likelihood. More complex models will have a wider hypothesis space

than simple models. Therefore, complex models tend to have a better fit to the

data regardless of whether they capture the data-generating process. In Fig 1.17,

I illustrate the posterior function of three GPs with a squared exponential kernel

with fixed lengthscales. Visually, it is readily apparent that small lengthscales will

lead to overfitting. This is because small lengthscales increase the flexibility of the

model. When calculating the marginal likelihood, this flexibility is penalized. The

same principle applies to the variance parameter, where higher variances are penalized

to prevent overly complex models.
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Figure 1.17 | Gaussian Process data fit with different lengthscale hyperparameters.
The blue line indicates the posterior estimate of the rate parameter of a GP with Bernoulli
likelihood and a squared exponential kernel with a fixed variance of 4.18 and varying
lengtscales (left : 0.01, middle: 0.1, right : 0.3). The GP was trained with variational inference.
The blue points are the training data. . Figure generated by Max Frank.

This principle is illustrated in Figure 1.18, which shows the ELBO estimates for a grid

of hyperparameter combinations. There is an optimum in the ELBO at intermediate

variance and lengthscale, where there is an optimal tradeoff of data fit and model

complexity.
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Figure 1.18 | Marginal likelihood estimate of GP for different hyperparameter
settings. The left panel shows the contours of the ELBO estimate of the log marginal
likelihood of a GP with Bernoulli likelihood and a squared exponential kernel. There is a
maximum of the ELBO surface at variance=4.18 and lengthscale=0.34, as indicated by the
black dot. The right panel shows the posterior rate estimate (blue line) of the GP with the
highest ELBO. The blue points are the training data. Figure generated by Max Frank.

1.8.6 Hypothesis tests using Gaussian processes

The ability to encode assumptions about the data-generating processes and the

robustness to overfitting makes GPs an attractive tool to model many types of

data. In research applications, fitting these models is often a means to test different

hypotheses. In this Section, I will describe how GP models can be used fto decide

between a null hypothesis and an alternative hypothesis based on observed data

points.

There are different approaches that can be used once a GP is conditioned on a set of

input data.

1.8.6.1 Hypothesis testing based on hyperparameter estimates

One approach is to evaluate the posterior estimate of the hyperparameters of the GP.

Depending on the setup of the GP model, the hyperparameters will have interpretable

meanings for the underlying function.

For example, in the case of GP regression, the lengthscale parameter of a squared

exponential kernel is inversely proportional to the influence of the input dimension
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on the posterior process. As the lengthscale gets larger, the covariance between input

points decreases. In the case of multivariate regression, this can be used to determine

which inputs are important to determine the output values. If we extend the squared

exponential kernel from Section 1.8.2 to multiple input dimensions, we get

k(x,x′) = σ2f exp

(

−(x− x′)T M (x− x′)

2

)

;M = diag(ℓ)−2 (1.25)

where ℓ is a vector of lengthscales of length equal to the number of input dimensions

D. The relevance of the dth input dimension is inversely proportional to ℓd. This is

called Automatic relevance determination (Neal, 1996) and can be used to remove

irrelevant input dimensions.

1.8.6.2 Hypothesis testing based on the marginal likelihood

Similarly, whether an output is linearly dependent on an input by looking at the

lengthscale hyperparameters of a regression model where the slope is modeled by a

GP with a squared exponential kernel (Mulder, 2023).

y = β(x)x+ ϵ (1.26)

β(x) ∼ G P
(

0, k
(

x,x′
))

(1.27)

where k (x,x′) is a squared exponential kernel. As the inverse of the lengthscale

parameter of the kernel approaches zero, the slope function β(x) will become constant,

and thus

y = βx+ ϵ (1.28)

These two examples illustrate the interpretability of the hyperparameters of GP

models. However, this does not directly provide a statistical estimate that allows the

quantification of the confidence level of rejecting the null hypothesis.

A common test statistic in Bayesian modeling is the Bayes factor (BF). The Bayes

factor is the ratio of the marginal likelihoods of two models. The marginal likelihood

of a model is the evidence or likelihood of the model after seeing data integrated over

the priors of the parameters of the model. In the case of GP regression, two models

that correspond to the null and the alternative hypothesis can be used to compute

a BF of the hypotheses. The marginal likelihood for a GP model M (including the

hyperparameters of the model) is

p(D |M) =

∫

p(θ |M)p(D | θ,M)dθ (1.29)

where D is the observed data and θ is a vector of the hyperparameters of the model.

This integral might be analytically intractable, depending on the prior over the
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hyperparameters p(θ | M). Therefore, in practice, the hyperparameters are often

optimized for both models, and the marginal likelihood is approximated by the

maximum a posteriori likelihood with

p(D |M) = p(D | θ̂,M)p(θ |M) (1.30)

where θ̂ is the optimized set of hyperparameters. In practice, the prior over the

hyperparameters is often chosen to be uninformative, which means the prior term can

be excluded. Thus, the approximation of the BF for two models M0,M1 corresponding

to the null and the alternative hypothesis becomes

p(D |M1)

p(D |M0)
=
p(D | θ̂1,M1)

p(D | θ̂0,M0)
(1.31)

This is sometimes referred to as the likelihood ratio. However, this approximation has

to be handled with care if the models vary in their number of hyperparameters. Since

the full BF integrates over all hyperparameters, models with different numbers of

parameters can be compared. However, with the maximum likelihood approximation,

this robustness is lost.

Using the likelihood ratio as a test statistic, one can make use of Wilks theorem

(Wilks, 1938), stating that if the null hypothesis is true and the number of observed

data points approaches infinity, the likelihood ratio statistic will approach a chi-

squared distribution with degrees of freedom equal to the difference in number of

parameters between the two models. This result has been used for calculating p-values

for hypothesis tests with GPs applied to genomics (Svensson et al., 2018; BinTayyash

et al., 2021). However, Wilks’ theorem only holds true if the null model and the full

model are strictly nested, meaning that the null model’s parameters lie strictly within

the parameter space of the full model. This assumption can often be violated with

GP hypothesis tests, as will be demonstrated in the next Chapter.

1.8.7 Applications in genomics

The ability to model smooth nonlinear functions without the need to explicitly know

the parametric function of the data-generating process makes GPs an attractive way

to model gene expression over time courses or in spatial contexts. In this Section, I

will give an overview of studies that use GPs to model genomic data.

1.8.7.1 Time course data

An early application of GPs to microarray time-course data was in the modeling of

TF regulation networks. Lawrence et al., 2006 studied the response of five target

genes of the p53 tumor suppressor gene. They used linear and nonlinear modes of

transcriptional regulation to calculate p53 expression levels only from observations of

its target genes. The time course data of the target genes was modeled as a GP with a
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squared exponential covariance function. They could then compare their estimations

of p53 expression levels to experimentally measured levels.

In a similar fashion, Kirk and Stumpf (Kirk and Stumpf, 2009) fit GP models to

gene-expression data of 800 Arabidopsis thaliana genes, measured in duplicates at

11 time points. They were interested in obtaining error distributions for parameter

estimates of different models of gene regulation. Their approach involved sampling

the GP posterior to obtain a bootstrapped dataset of gene expression time courses.

They then applied the models of gene regulation to their samples to estimate the

distribution of model parameters.

Stegle et al. introduced a GP model called GPTwoSample that allowed for the

decision of whether two-time courses of a gene were different between two experimental

conditions (Stegle et al., 2010). The idea was that if the null hypothesis (no differential

expression between conditions) was true, then both sets of observations could be

explained by draws from a single distribution and, therefore, modeled with a single

GP. In the case of differential expression, the data would need to be modeled by two

independent GP models for the two conditions. The ratio of the likelihood of the two

models could then be used to rank the genes according to the likelihood of differential

expression. The GP models used a squared exponential kernel and also introduced

the idea of using a heavy-tailed non-Gaussian likelihood to be more robust to outlier

observations that are frequently observed in genomics data. Importantly, the likelihood

ratio of this model can be evaluated not only for all observations but also for subsets

of observations at a particular time point, allowing the authors to derive a mixture

of expert models that decide for each time point if a gene is differentially expressed.

This allowed the question to be asked not only if a gene is differentially expressed but

also when differential expression occurs. Note that there is an important difference

between performing independent tests for differential expression at each time point

and this model since the covariances between measurements closely together in time

are considered.

The two-sample hypothesis test was subsequently expanded to allow a continuous

measure of differential expression that was not confined to time points with experi-

mental data (Heinonen et al., 2015). This was achieved by comparing the posterior

concentration of the null model and the alternative model as an estimate of the

confidence of the models. Both of these models need to use heuristics in order to

determine the time of divergence of gene expression between conditions. Yang et

al. developed a GP model with the divergence time point as an explicit parameter,

allowing for a fully Bayesian estimate of when two-time series first diverge (Yang

et al., 2016).

Another type of hypothesis test with GPs, termed the one-sample test, was imple-

mented by Lawrence et al. (Kalaitzis and Lawrence, 2011) shortly after the two-sample

test by Stegle et al. (Stegle et al., 2010). Here, the question is whether gene expression
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of a gene varies over time given a single time-course measurement. Again, the test is

based on computing the likelihood ratio of two models. A null model that does not

allow for variation in gene expression over time and an alternative model that does.

They use a GP with a squared exponential kernel and a robust Student-t likelihood

to model the alternative hypothesis of a temporally varying gene. The null model is

constructed by setting the variance parameter of the kernel to zero and the lengthscale

parameter to infinity. They use the likelihood ratio of these model to rank genes

according to their likelihood of being temporally variable.

GPs have also been extensively used to model gene expression in single-cell datasets.

Here, time series are often not created by performing sequencing experiments at differ-

ent time points but created from a single or a few sequencing runs using pseudotime

methods. This makes temporal estimates prone to error. Furthermore, sequencing

depth is reduced for an individual cell compared to bulk sequencing methods, putting

increased importance on correct modeling of the noise with appropriate likelihood func-

tions. The recently introduced GPcounts model implements two likelihoods suitable

for single-cell measurements: the negative binomial likelihood and the zero-inflated

negative binomial likelihood. They use their model to perform both two-sample and

one-sample hypothesis tests and show on simulated data that hypothesis tests with

the appropriate model likelihood have higher power compared to the same tests with

Gaussian likelihood.

Because pseudotime inference in single-cell data can lead to the discovery of a

branching structure in developmental datasets, GP models have also been developed to

explicitly model time series that contain bifurcation events and to assign observations

to branches. Note that compared to the previously discussed bulk sequencing problems,

there are some subtle differences. In the bulk scenario, comparing two-time series of

the same gene in two conditions, the assignment of each data point to each branch is

known and fixed. Because pseudotime inference is based on noisy data, however, the

association of cells to different branches should be taken with care. For this reason,

GP models based on an overlapping mixture of Gaussians (Lázaro-Gredilla et al.,

2012) have been developed. These models construct branched trajectories and assign

each cell to the trajectories in a probabilistic manner. These models can then be used

to compute branching events either globally for all genes (Lönnberg et al., 2017) or

locally for a single gene (Boukouvalas et al., 2018a).

1.8.7.2 Spatial data

With the advent of single-cell methods that allow the profiling of gene expression in

a spatially resolved manner, there was an increased demand for methods detecting

spatially variable genes. Svensson et al. developed such a method with SpatialDE

(Svensson et al., 2018; Kats et al., 2021). SpatialDE can be considered an extension

to the one-sample test introduced in the previous Section. It trains two GP models,

allowing for spatial variability in the kernel or keeping expression constant in space.



1.8 Introduction to Gaussian Process models 51

The likelihood ratio of these models was then used to calculate a statistical estimate

of spatial variability, using Wilks theorem to produce calibrated p-values (see Section

1.8.6.2). Furthermore, they provide an effect size estimate that measures the fraction

of spatial variance, i.e., the fraction of total variance that is explained by spatial

variation. The model also allows for the clustering of spatial patterns, which means

that groups of genes with similar expression patterns can be automatically found.
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2 | The GPmeth model for epige-

netic single-cell data

2.1 Derivation of the GPmeth model

Based on the previous Chapters, I designed model that makes use of all the available

information within single-cell epigenetics data to detect changes over the course

of continuous trajectories. The first step in this process is to use single-cell gene

expression data to assign cells to a position within pseudotemporal trajectories

(see Section 1.7.1). This constitutes the global analysis part of the framework. The

subsequent local analysis involves the identification of epigenetically regulated regions

that change over the course of the inferred trajectories. This involves considerable

challenges, as discussed in Section 1.7.2. These challenges are addressed by the

GPmeth model.

In this Section, I describe the GPmeth model and the considerations that went into

its formulation.

2.1.1 Model Description

The input data for GPmeth are single-cell base-resolution epigenetic data. Each data

point for CpG/GpC site i, in cell j, can be described by

yij = Bern(ρij) (2.1)

Where ρij is the unknown true (Bernoulli distributed) methylation rate and y is the

observation in the data. Following the argumentation of Section 1.7.2 we assume that

there are no hemimethylated sites, which is why methylation can be described as

binary:

y =







1 Nmethylated/Ntotal > 0.5

0 Nmethylated/Ntotal < 0.5
(2.2)
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Where Nmethylated are the number of reads indicating a positive methylation state, and

Ntotal are the total number of reads at that site. Sites with Nmethylated/Ntotal = 0.5 are

discarded. For the majority of observations, all reads are methylated or unmethylated

(Fig 2.1).

Figure 2.1 | Genome-wide scNMT methylation rate measurements. Histogram of
observed CpG methylation rates in individual cells. The data shown represents a subset of
one million methylation observations from the mouse gastrulation dataset. CpG sites with
0.5 methylation rate have been removed. Figure generated by Max Frank.

2.1.1.1 Modeling individual CpG/GpC sites

Each cell j can be associated with a position in pseudotime or cell grouping (Fig 2.2,

a) using the methods described in Section 1.7.1.3. As motivated by Section 1.7.1.3

we expect the value of the underlying methylation rate to vary smoothly along time.

We start out with a model describing the underlying methylation rate ρ of an

individual CpG/GpC site i along that temporal axis. The process of generating input

data for an individual CpG/GpC site is outlined in Figure 2.2. First there is a global

analysis producing a branch assignment as well as a pseudotime estimate tj for each

cell. Measurements of a CpG/GpC site can then be sorted along their pseudotemporal,

and the methylation rate can be modeled. I choose a Gaussian Process to model the

methylation rate for the reasons introduced in Chapter 1.8.5.
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Figure 2.2 | Workflow to generate input data for GPmeth for individual sites.
The top row shows how cells are assigned a pseudotemporal value and associated with a
developmental branch. The bottom row shows the subsetting of the methylation data to a
specific CpG/GpC site and the ordering of the cells according to pseudotime. Each regulatory
region that is produced like this can then be modeled with the GPmeth model. Figure
generated by Max Frank.

With the assumption of smoothly varying methylation, we can define a function fi(t)

that describes the methylation rate trajectory of each individual CpG/GpC site i.

ρi = fi(tj) (2.3)

The temporal dynamics of methylation rate are described by a Gaussian process.

fi(t) ∼ GP (µi, ki) (2.4)

Because GPs produce outputs in the domain (−∞,∞) but ρ lies in the range [0, 1],

the Gaussian process output pushed through an inverse probit link function (see

Section 1.8.3) to guarantee a valid rate output:

ρi = Θ(gi(t)) (2.5)

gi(t) = GP (µi, ki) (2.6)

Here, gi is a nuisance function that is converted to the rate parameter with Θ, which

represents the cumulative distribution function of the standard normal distribution.

This ensures that the output of the GP is bounded between 0 and 1. Note that I

dropped the index i of the CpG/GpC site in the second equation for brevity. From

now on, it is assumed that each GP model will represent a single CpG/GpC site.
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When using GPs with Gaussian likelihoods, it is common practice to scale the output

data y to zero mean and unit variance before fitting the model. This ensures that

the GP can be parametrized with a constant zero mean. In the case of binary output

data, this is not possible. I, therefore, parametrize the GP with a constant mean:

µ̄i = Θ−1(ȳi) (2.7)

Where ȳ is the empirical mean of all observations. Since µ is the mean of the latent

function f , ȳ has to be mapped to the space of the latent function via the inverse of

the link function.

The GP is also parametrized by the kernel function ki. To differentiate this kernel in

later Sections and to make clear that this kernel models temporal changes I will drop

the index and refer to it as ktime. ktime produces the covariance matrix of the GP.

The kernel function contains the assumptions of the model. One way to encode our

expectation of smoothly varying methylation rate across the genome with a radial

basis function (RBF) kernel of the form

ktime(tj , ṫj) = σ2 exp

(

−∥tj − ṫj∥2
2l2

)

(2.8)

Where tj represents the pseudotime coordinate of the cell that the observation of

CpG/GpC site i was made in. σ and l are hyperparameters of the model. The

lengthscale parameter l controls the smoothness of the model, while σ is the kernel

variance determining the amplitude of changes in the function. Other kernels can be

chosen, such as a Matérn kernel or a linear kernel to encode varying assumptions

about the data-generating process (see Section 1.8.2 and Fig 2.3).
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Figure 2.3 | Kernel choices for binary Gaussian Processes. Shown are samples from
latent processes f(x) (left column), their equivalents after transforming through the link
function ρ(x) (middle column), and examples of the GP posterior (right column) where
the blue line represents the posterior estimate of ρ(x) and the black dots are the training
observations. Note that linear kernels become nonlinear through the transformation but
remain monotonic functions. Therefore, the linear kernel is not able to properly model the
example observations where the methylation rate is increasing and then decreasing, leading
to a flat posterior. Figure generated by Max Frank.

As discussed in Section 1.8.3, the marginal likelihood of this model cannot be computed

analytically. Therefore I use a variational inference approach to compute the ELBO
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as an approximation. The hyperparameters of the model are optimized by standard

gradient descent using the Scipy optimizer (Virtanen et al., 2020).

While these kernels allow to flexibly model temporal variation of the methylation

rate, we can also define a kernel that only allows constant functions over time. Then

ktime(tj , ṫj) = σ2 (2.9)

where σ is the kernel variance. In the case of a Bernoulli likelihood with a probit link

function, this variance parameter will always collapse to zero. The trained GP model

then is

g(t) = N(µ̄, 0) (2.10)

which leads to

ρ = ȳ (2.11)

and the marginal likelihood is simply

p(y|ρ) =
n
∏

j=1

ρyi,j (1− ρ)(1−yi,j) (2.12)

This models allow to perform a range of hypothesis tests on the observed data. These

include:

• Does the methylation rate of the observed CpG/GpC site change over the

course of a pseudotemporal trajectory? This can be achieved by computing the

likelihood ratio between a model with a temporally variable kernel ktime and a

model with a constant temporal kernel (see Section 2.1.2).

• Does the methylation rate vary smoothly over time, or can the variance be

explained by grouping cells into cell types? This can be achieved by comparing

a model with a smoothly varying kernel ktime to a model that has a constant

methylation rate ρc for each identified group of cells c.

• Does the methylation rate vary linearly or non-linearly over time? This can be

achieved by computing the likelihood ratio of a model with a non-linear kernel,

such as the squared-exponential kernel or the Matérn kernel, to a model with a

linear kernel.

In all these cases, the likelihood ratio of the models encoding different beliefs about

the data-generating process is the test statistic that can be used to rank different

CpG/GpC sites according to their likelihood of violating the null hypothesis. To get
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from the likelihood ratio to a test statistic that is properly controlled at a nominal

false discovery rate (FDR), the model must, however, still be calibrated (see Section

2.2.4).

I now have devised a range of tests for individual CpG/GpC sites. In practice, however,

these tests would only be useful in very targeted applications where one is interested in

only a handful of sites. For any genome-wide differential methylation analyses, testing

individual CpG/GpC sites would run into the issue of multiple testing. Furthermore,

researchers are typically not interested in individual CpG/GpC sites but want to

test whether there is differential methylation in a regulatory region. Therefore, I will

expand this model in the next Section.

2.1.1.2 Modeling regulatory regions

The models described in the previous Section allow for smoothly varying methylation

rate over time but do not account for the co-variation of neighboring CpG/GpC sites.

As discussed in Section 1.7.2.1, CpG/GpC sites that are closely positioned along

the genome cannot be treated as independent observations but co-vary. Therefore,

it makes sense to study CpG/GpC in the context of a genomic region as opposed

to an individual site. Figure 2.4 shows the workflow of producing input data for the

extended model that will be described in this Section.

Figure 2.4 | Workflow to generate input data for GPmeth. The top row shows how
cells are assigned a pseudotemporal value and associated with a developmental branch. The
bottom row shows the subsetting of the methylation data to a specific regulatory region
(e.g., enhancers, promoters, etc.) and the ordering of the cells according to pseudotime. Each
regulatory region produced like this can then be modeled with the GPmeth model. The
output of the GPmeth model for two trajectories is shown in the bottom right panel. Points
represent individual CpG/GpC measurements, and the contours depict the posterior mean
prediction of the model. Figure generated by Max Frank.
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Because genomic covariance results from multiple possible regulatory processes, it

is challenging to come up with an explicit model that describes the dependence of

a site on its neighbors. The simplest approach would assume constant methylation

for each cell across a limited genomic region. This would mean that the same model

as described above can be used where each CpG/GpC of a cell that falls into the

modeled region shares the same model. This assumption works well if the boundaries

of regulatory regions are precisely known before the analysis. However, since these

boundaries are often estimated, it would be desirable to derive a testing procedure that

is somewhat robust to the choice of boundaries. I, therefore, take a non-parametric

approach with a Gaussian process to model methylation rate across the genome as

well. Concretely, I express the covariance between sites with a squared-exponential

kernel of the form

kgenome(xi, ẋi) = σ2 exp

(

−∥xi − ẋi∥2
2l2

)

(2.13)

Where xi represents the genomic coordinate of the observation. σ and l control the

smoothness and magnitude of change of the methylation rate across the genome.

As discussed in Section 1.8.2.2 there are different ways to model the co-variation of

the methylation rate across the genome and across pseudotime. One choice would be

to express the total covariance as an additive combination of kgenome and ktime

k = kgenome + ktime (2.14)

This would mean that we assume that there are two independent processes that

modulate the methylation rate in the genome dimension and in the time dimension.

This assumption is likely to be too restrictive. For example, there are DNA-binding

proteins that are sequence-specific and will, therefore, operate on a specific part of the

genome. If these regulators are differentially expressed over time, they can influence

the methylation rate, which is dependent on both genomic position and time. Another

option is to multiply the genomic and temporal kernel

k = kgenome ∗ ktime (2.15)

This is a more flexible structure that will be able to model the influence of regulatory

factors that depend on both time and genomic position. However, there are clear

cases of factors that will not be time sensitive but dependent on position. These

include nucleosomes that are not displaced during the course of time or regions that

are permanently silenced by methylation. Therefore, I use a combination of the two

kernels above

k = kgenome + ktime ∗ k‘genome (2.16)
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This assumes methylation rate is an additive result of the influence of genomic factors

that are constant over time (modeled with kgenome) and genomic factors that vary

in their effect across time (modeled with ktime ∗ k‘genome). This explicitly separates

factors that are static over time (such as the DNA sequence, which is an important

component in modeling DNA methylation (Angermueller et al., 2017), from regulatory

influences that vary over time but will also have a positional component, such as

DNMT binding. This is the kernel of the full model for the methylation rate of a

genomic region. I can now use this model to answer the question of whether there is

differential methylation over the course of a developmental process. As before, this

can be achieved by computing the likelihood ratio of the full model and a model that

corresponds to the null hypothesis of no variation over time. This model can easily

be formulated by removing the part of the kernel that takes into account temporal

information

knull = kgenome (2.17)

Figure 2.5 shows draws from GP priors with the different kernels mentioned above.

One can see that with the additive kernel, the temporal dynamics extend throughout

the whole genomic window, inconsistent with a locally binding regulatory protein.

With the multiplicative kernel, there is a dependency between the absolute value of

methylation and the rate of methylation rate change at any point in the genome.

This is also not a desirable property of the model. With the full kernel, the rate of

change and absolute methylation level are no longer coupled. I, therefore, use the

kgenome + ktime ∗ k‘genome kernel combination for all subsequent experiments.
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Figure 2.5 | Kernel combinations for methylation rate modeling. Shown are samples
from the GP prior. Contour lines represent the methylation rate ρ(x). The column indicates
the kernel construction of the GP. The row indicates the type of kernel that ktime is. kgenome

is always a squared exponential kernel. All kernels have been instantiated with variance=1
and lengthscale=0.25. Figure generated by Max Frank.

With these kernels in hand, I can now formulate a range of models that correspond

to specific assumptions about the data. The models are listed in Table 2.1.
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Model name kgenome ktime Assumption

Constant 0 0 No methylation changes across re-

gion or time

ConstantLinear 0 Lin Methylation rate changes monoton-

ically over time but not across the

region

ConstantRBF 0 RBF Methylation rate changes smoothly

over time but not across the region

ConstantMatérn 0 Matérn3/2 Methylation rate changes less

smoothly over time but not across

the region

ConstantCategorical 0 Categorical Methylation rate changes across cell

types but not across the region

RBFConstant RBF 0 Methylation changes only across

the region

RBFLinear RBF Lin Methylation rate changes monotoni-

cally over time and smoothly across

the region

RBFRBF RBF RBF Methylation rate changes smoothly

over time and smoothly across the

region

RBFMatérn RBF Matérn3/2 Methylation rate changes less

smoothly over time and smoothly

across the region

RBFCategorical RBF Categorical Methylation rate changes across cell

types and smoothly across the re-

gion

Table 2.1 | Models for describing methylation rate in a regulatory region.

2.1.2 Differential Testing

From the models described in 2.1, a range of statistical tests can be derived

where test statistics are obtained with the comparison of models that correspond

to the null and the alternative hypotheses. In the case of testing for differential

methylation/accessibility over a time course, the null hypothesis is that methyla-

tion/accessibility does not change, which corresponds to a model without a temporal
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kernel. The alternative hypothesis can be expressed by one of the models in Table 2.1,

depending on the prior assumptions a researcher makes about the data. Figure 2.6

shows the models that can be tested against each other if the assumption is that the

methylation rate is constant across the tested genomic window. In this case, the data

can be visualized by aggregating the signal of all CpG/GpC sites within the input

window. Here, a Constant model is tested against the ConstantCategorical, Constant-

Linear, and ConstantRBF models. The ConstantCategorical model will describe each

group (category) of cells separately. The ConstantLinear model allows for linearly

increasing or decreasing methylation rate over time, and the ConstantRBF allows for

nonlinear temporal trajectories. The comparison of the marginal likelihoods of the

pairs of null and full models allows the calculation of test statistics that are used to

reject the null hypothesis. This will be described further below.

Figure 2.6 | GPmeth model comparisons without genomic variability. The left
panel shows the input data where each point represents the average methylation rate ρ
(y-axis) of all CpG/GpC sites within a predefined genomic window that was observed in a
cell with associated pseudotime (x-axis). The right panel depicts three different hypothesis
tests where a null model (bottom row) is compared to the respective full model above (top
row). The null model for all hypothesis tests is a Constant model that does not allow for
varying methylation rate and will regress to the mean methylation rate of all cells. The full
models correspond to the ConstantCategorical, ConstantLinear, and ConstantRBF models.
Models are described in Table 2.1. Figure generated by Max Frank.

As discussed in Section 1.5 and 2.1.1.2, the assumption of constant methylation

rate within predefined genomic windows is often hard to justify (see Section 1.7.2,

and GPmeth can also test for differential methylation/accessibility without this

assumption. Figure 2.7 shows the same tests as discussed above while allowing for

methylation rates to be variable within the genomic region. Note that the majority

of the region is not differentially methylated/accessible. This would dilute the signal

and decrease the power of the statistical test when averaging over the input window.
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Figure 2.7 | GPmeth model comparisons with genomic variability. The left panel
shows the input data where each point represents the genomic location (x-axis) and methyla-
tion status of a single CpG/GpC site (red=methylated, blue=unmethylated)in a cell with
associated pseudotime (y-axis). The right panel depicts three different hypothesis tests where
a null model (bottom row) is compared to the respective full model above (top row). The null
model for all hypothesis tests is a RBFConstant model that allows for varying methylation
rate only within the genomic window but not over time. In these plots, each point represents
the average methylation rate of a single CpG/GpC site across all cells. The full models
correspond to the RBFCategorical, RBFLinear, and RBFRBF models. Models are described
in Table 2.1. Figure generated by Max Frank.

To obtain a statistical metric of differential methylation, we compute the likelihood

ratios between the null model and the full models. Under the assumption of the

null hypothesis, Wilks theorem Wilks, 1938 states that the negative log of these

likelihood ratios should follow a χ2-distribution with degrees of freedom according to

the difference in hyperparameters between the full and the null model (see Section

1.8.6).

p(LLR | d) = χ2
d(−LLR) (2.18)

Where L is the log-likelihood ratio of the full model with a temporal kernel and the

null model without a temporal kernel.

This has been successfully employed in the context of GP hypothesis testing by

Svensson et al. (Svensson et al., 2018).

However, these models are not truly nested since that would require the parameters of

the null model to be fixed to a value that lies strictly in the interior of the parameter

space of the full model. In my case, if I set the variance parameter of ktime to zero,

I recover the null model. Setting the variance to zero means that the parameter is

fixed at the edge of the parameter space. Furthermore, due to the non-Gaussian

likelihood, it is not possible to calculate the exact marginal likelihood of the model.

Instead I calculate the ELBO estimate of the marginal likelihood. This turns the
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inference problem into a numerical optimization problem. Therefore, the validity

of the assumptions for the likelihood ratio statistic also depends on how good the

approximation to the marginal likelihood is.

I, therefore, decided to validate the calibration of the model empirically by testing

the model on synthetic data that represent the null hypothesis. This will be discussed

further in Section 2.2.4.

2.1.3 Refinement of Differential Regions

In the above Sections, I formulated a model that describes the change in methylation

rate over time for a regulatory region. In an ideal scenario, these regulatory regions

should be chosen so that exactly one differential methylation ’event’ takes up most or

all of the region. In practice, researchers often do not have good knowledge about

where in the genome differential methylation will occur. As mentioned before, a good

initial guess for these regions is known regulatory elements such as enhancers and

promoters. However, there is no guarantee that the boundary of these regions is

chosen such that only one differential methylation ’event’ happens in the chosen

window.

Thus, if we get a significant test for a tested window, the next question arising is at

which genomic coordinates the methylation rate change actually occurred. Fortunately,

this can be readily answered since the model gives predictions of the methylation

rates that can be evaluated with arbitrary precision throughout the region. A good

measure of whether there is a biologically relevant change in methylation rate at a

specific position in the genome is the effect size of the change or methylation rate

difference. For example, many bulk studies use a threshold of a methylation rate

difference of 0.3 between samples. With the model, I can ask for any point in the

tested region what the maximum and minimum predictions for methylation rate are.

The difference between those I termed Maximum Methylation Rate Change (MMRC),

which can then be thresholded to produce refined regions of differential methylation

(Fig 2.8). Note that the model is able to capture and distinguish two regions within

the window that follow opposite trends of methylation rate change. This highlights

the importance of a flexible nonlinear model.
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Figure 2.8 | Refinement of differential regions. The upper panel shows the posterior
mean predictions of methylation rate of the full model (a GP with a squared-exponential
kernel ktime) as contours. The training data (synthetically generated) are shown as points,
with blue indicating an unmethylated site and red indicating a methylated site. The lower
panel shows the maximum methylation rate change (MMRC) at each position in the genomic
region as a blue line. The horizontal dotted line represents a threshold for MMRC of 0.3.
The grey-shaded areas indicate refined regions where the MMRC is consistently above the
threshold value. In this example, there are two differential events happening in close vicinity
to each other, where one refined region is demethylated over time while the other becomes
methylated. Figure generated by Max Frank.

2.2 Validation of the GPmeth Model on Synthetic Data

To validate the ability of GPmeth to model regulatory regions and test for differential

expression, I created a synthetic dataset of regions with varying degrees of differential

methylation.

2.2.1 Data generation

The goal of generating a synthetic dataset of regulatory regions was to be able to

control the underlying methylation rate while mimicking the data generation and noise

process of a scNMT-seq experiment as closely as possible. As described in Section

1.3.1, the DNA methylation and chromatin accessibility readouts in scNMT-seq

experiments are based on bisulfite conversion of unmethylated CpG/GpC sites that

are then sequenced with high throughput sequencing. To generate realistic scNMT-seq

data, I, therefore, had to simulate sequencing reads. The coverage of the genome

by reads is limited by the low amounts of input material in a single nucleus, rather

than the sequencing depth. Based on previous scNMT-seq experiments (Angermueller

et al., 2016; Clark et al., 2018), I assumed a fixed coverage cov of 9% of the genome.

Next, I assumed that the number of reads that would cover a given genomic region

in an individual cell would follow a binomial distribution

nreads = Bi(floor(lregion/lread), cov) (2.19)
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where the number of draws equals the ratio of the length of the genomic region lregion

and the length of the reads lread. The length of the reads can vary depending on the

sequencing technique. Here, I used a read length of 75bp. Reads are then randomly

placed in the genomic region. Each read will provide a binary readout of all CpG/GpC

sites that are covered by it. To generate a simplified distribution of these sites, I

assumed that they are uniformly distributed across the region with a density equal

to the average genome-wide density. For CpG sites, this is roughly 0.5% outside of

CpG islands and 5% within CpG islands. For GpC sites, I assumed 5% genome-wide

density. Furthermore, the data depends on the number of cells assayed and their

distribution across developmental trajectories. For this simulation, I assumed that

300 cells were sequenced with uniform distribution along a single temporal axis.

Figure 2.9 shows the resulting positioning of CpG/GpC sites for the experimental

parameters outlined above.

Figure 2.9 | Example simulation of CpG/GpC locations. The scatterplots show
the positions of assayed CpG/GpC sites in a simulated scNMT experiment with 300 cells
uniformly distributed across pseudotime. I assumed a read coverage of 0.1 and a site density
of 0.005 left or 0.05. Figure generated by Max Frank.

Next, I created a generative model for the methylation rate of a simulated region. For

simulating regions that correspond to the null hypothesis of no methylation change

over time, the generative function is simply sampled from a GP with a genomic

squared exponential kernel.

ρnull ∼ Φ(GP (0, kgenome) (2.20)
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Figure 2.10 shows 50 draws of this model. The sampled methylation rate is then used

to generate realistic experimental data by performing Bernoulli draws at simulated

positions as described above (Fig 2.10, right panel).

Figure 2.10 | Simulated scNMT data with no methylation change over time. The
left panel shows 50 samples of the methylation rate ρ from a GP with a genome kernel only.
The x-axis of each plot corresponds to the genome position and the y-axis corresponds to
pseudotime. The right panel shows the Bernoulli draws at simulated positions of CpG sites.
Figure generated by Max Frank.

For regions that correspond to the alternative hypothesis of differential methylation,

I assumed that there is a single differential methylation event in the center of the

regulatory region. As shown in the previous Section GPmeth is also capable of

identifying multiple differential methylation events or events that are not in the

center of the region. The choice for the simulation was made to simplify the analysis.

For this, I specified a GP with a differential methylation kernel that is an additive

kernel between kgenome as described above and a change window kernel that models

methylation across time on a subset of the region:

ρalt ∼ Φ(GP (0, kalt)

kalt = kgenome + kCW

kCW = k1(x, x
′) ∗ (1− σ(x)) ∗ (1− σ(x′)) + k2(x, x

′) ∗ σ(x) ∗ σ(x′)

σx0,x1(x) =
1

e−s(x−x0)
∗ 1

e−s(x−x1)

The change window kernel allows the transition from a kernel k1 outside of a window

[x0, x1] to a kernel k2 within the window. The parameter s specifies the steepness

of the transition. In this case, I chose to use a constant kernel k1 with low variance
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outside of the window and a squared exponential kernel k2 inside of the window.

The lengthscale parameter of k2 was set to half the length of the total pseudotime,

and the variance was adjusted so that a desired level of maximum methylation rate

change (see Section 2.1.3 was produced. For details of the simulation process, see

Section 6.1.3.

Figure 2.11 shows examples of draws from the model with varying window sizes and

differential methylation rates.

Figure 2.11 | Simulated scNMT data with methylation change over time. The
left panel shows 50 samples of the methylation rate ρ from a GP that produces methylation
change over time. The x-axis of each plot corresponds to the genome position and the y-axis
corresponds to pseudotime. The right panel shows the Bernoulli draws at simulated positions
of CpG sites. Figure generated by Max Frank.

2.2.2 Model Evaluation

The generative model described above was used to create a set of synthetic regions

from the null hypothesis and the alternative hypothesis with different differential

window sizes and methylation rate changes.

First, I tested the sensitivity of the differential methylation test with the RBFRBF

model (Tab 2.1) at different settings for the simulation. To this end, I simulated

1000 regions with the generative model corresponding to the null hypothesis. Then I

simulated 100 regions for each combination of the following scenarios:

Parameter Values

CpG/GpC coverage 0.05, 0.005

Differential methylation window size 100, 200, 300, 400, 500, 600, 700, 800, 900,

1000, 2000, 3000

Maximum methylation rate change 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

Table 2.2 | Simulation parameter settings
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The simulated regions had a total width of 3000 bp, which means that the window

that is affected by differential methylation ranges from 3% of the window to 100%

of the region. Figure 2.12 shows the receiver operating characteristic curves for the

different parameter settings. As expected, performance consistently improves with

increasing width of the differential methylation window, as well as with increasing

MMRC parameter. This result also illustrates the drastic effect of the sparsity of the

CpG/GpC sites on the performance of the model. With a CpG/GpC frequency of

0.5% ( Fig 2.12, top row), the model is not meaningfully different from a random

classifier at MMRCs below 0.5. Above 0.5, the test becomes more powerful, but

only if stretches of the genome larger than 500bp are affected. In contrast, with a

CpG/GpC density of 5% (Fig 2.12, bottom row), the test has enough power to detect

methylation rate changes as low as 0.2 if stretches in the genome larger than 500bp

are affected or even smaller stretches if the MMRC is 0.5 or higher.

Figure 2.12 | Performance of the RBFRBF differential methylation test on
simulated regions. Receiver operating characteristic (ROC) curve plots show the power
of the RBFRBF model to identify differentially methylated/accessible regions in different
settings. The top row shows ROC curves with a CpG/GpC density of 0.005, typical for
endogenous methylation outside of CpG islands. The bottom row shows ROC curves with a
CpG/GpC density of 0.05, which is typical for GpC sites and CpGs in CpG islands. Maximum
methylation rate change increases from left to right. Note that for the lower CpG/GpC
density scenario, the model only becomes powerful with larger methylation rate changes,
while with the higher density, the model is sensitive enough to identify changes in methylation
rate as low as 0.2 given a large enough differential methylation window. Figure generated by
Max Frank.

Next, I investigated how accurately the model estimates the MMRC. The MMRC

value is an important metric to evaluate the magnitude of the methylation rate

change. This can be thought of as analogous to a fold-change estimate in differetial

gene expression testing. Figure 2.13 shows the MMRC estimation by the RBFRBF
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model for different simulation criteria. In general, the estimate of the MMRC is

conservative, which is to be expected and indicates that the model does not overfit

the data. Furthermore, the estimation becomes more accurate with larger stretches

of the genome being affected and higher MMRC.

Figure 2.13 | Accuracy of the RBFRBF model to estimate the maximum methyla-
tion rate change (MMRC). Violin plots indicate the MMRC predictions of the RBFRBF
model for different simulation scenarios. The blue horizontal line indicates the ground truth
of the data-generating process. The top row shows MMRC predictions with a CpG/GpC
density of 0.005, which is typical for endogenous methylation outside of CpG islands. The
bottom row shows MMRC predictions with a CpG/GpC density of 0.05, which is typical for
GpC sites and CpGs in CpG islands. The MMRC ground truth increases from left to right.
The model provides a systematically conservative estimate of MMRC and gets more accurate
the larger the differential methylation window size, as expected. For the higher CpG/GpC
density scenario, it seems that a differential methylation window of 500 base pairs (bp) is
sufficient for a good MMRC estimation in most cases. In the lower density scenario, the
estimation only becomes more accurate at 1000 bp. Figure generated by Max Frank.

This simulation illustrates how difficult it is to detect differential methylation events in

single-cell data. It is likely that many real-world regulatory events that are important

for cellular decision-making just barely fulfill the criteria that this test requires to

capture them. This highlights the importance of using the most powerful test possible

if working with single-cell methylation or accessibility data. Therefore I also compared

my model with alternative models and previously used methods.

First, compared the RBFRBF model to its counterpart without a genome kernel

(i.e., where I assume a constant methylation rate over the genome dimension) to see

if the addition of genome covariance results in increased power of the test. Then, I

also wanted to test what the theoretical power of an optimal performance test for

these simulated regions would be. To this end, I modeled the same regions with the

generative model that originally produced the data. I fixed the hyperparameters of

the generative models at the settings that produced the simulated region and only

trained the variational parameters of the model. The idea here was to see how far off

the RBFRBF model is from what is theoretically achievable with a perfect model and
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in what cases a lack of power simply is due to data noise. To compare these models, I

only performed simulations for the case that CpG/GpC density is 0.005, which is the

more challenging scenario. Figure 2.14 shows the ROC AUC score for the RBFRBF,

ConstantRBF, and generative models. When MMRC is 0.2, none of the models has

large power to detect differential methylation. With MMRC of 0.3 and above, the

RBFRBF model and generative model outperform the ConstantRBF model, especially

for smaller diffmet window sizes. This is reassuring since it indicates that modeling

genome covariance leads to more accurate models when the boundaries of the region

cannot be chosen accurately. Furthermore, the RBFRBF model has comparable AUC

scores to the generative models for all settings, meaning the performance is close to

the theoretically optimal performance.

Figure 2.14 | Performance comparison of RBFRBF, ConstantRBF, and the
Generative Model. Bar plots indicate the performance of different models to identify
differentially methylated regions in terms of the area under the receiver operating characteristic
curve (ROC AUC), where 0.5 corresponds to a model that is no better than a random classifier,
and 1 corresponds to a perfect classifier. The generative model (blue) is the model used to
simulate the data and to give a theoretical upper bound on the performance since it should
be the most powerful model. The RBFRBF model (orange)is consistently performing close
to the generative model. As expected, the ConstantRBF (green) model is only powerful for
large differential methylation windows since it lacks the genomic kernel. Figure generated by
Max Frank.

Next, I assessed the accuracy of the MMRC estimates of the three models. Figure

2.15 shows the MMRC estimates of the models at different settings. All three models

consistently underestimate the MMRC compared to the ground truth indicated by

the dashed line. The RBFRBF model has an intermediate performance between the

ConstantRBF model and the generative model.
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Figure 2.15 | Maximum methylation rate change (MMRC) estimation accuracy
comparison of the RBFRBF, ConstantRBF, and the Generative Model. Violin
plots show the estimation of MMRC by different models for various simulation scenarios. The
blue horizontal line indicates the ground truth MMRC value that was used for the simulation.
The generative model (blue), which is the model used to simulate the data, should be the
optimal model. While it gives the least conservative estimate of the true MMRC, it still
consistently underestimates the true rate change. This illustrates the difficulty of estimating
true underlying rate parameters from sparse Bernuoulli-distributed data. The RBFRBF
model (orange) yields a more conservative estimate of the true MMRC. The ConstantRBF
(green) model underestimates the true MMRC drastically, especially in the case of small
differential methylation windows. This is expected since it will average out the methylation
rate for the whole region that is modeled. Figure generated by Max Frank.

2.2.3 Benchmarking GPmeth against other methods

I also used the simulated regions to compare the GPmeth method against other

methods that could be applied to single-cell methylation/accessibility measurements.

To my knowledge, GPmeth is the only test that models both the temporal changes

and the genomic changes of methylation rate as a continuous variable (see Section

1.5.2.2). Here, I compare the GPmeth model against Fisher’s exact test, which has

been previously used to test for differential methylation between cell types in scNMT

experiments (Argelaguet et al., 2019b) and scMET (Kapourani et al., 2021), which

was developed specifically to model single-cell methylation data. Since both of these

tests require cell types as input, I produced two artificial groups by defining an early

and a late cell type by thresholding the pseudotime coordinate of each cell at half the

total pseudotime. Since the generative model produces continuous change over time,

the GPmeth model is expected to be more powerful. Furthermore, the two tests do

not explicitly model genomic covariance but aggregate the methylation signal for each

cell. For this comparison, I chose a challenging scenario for both CpG/GpC densities.

With a CpG/GpC density of 0.05, I set the MMRC to 0.3 and the diffmet window

width to 600bp. For the CpG/GpC density of 0.005, I set the MMRC to 0.5 and

chose the same diffmet window size of 600bp. Figure 2.16 shows the ROC curves for

GPmeth models with different kernels compared to scMET and Fisher’s exact test.

Both CpG/GpC density scenarios show the most power for GPmeth models with a

kernel that models genome covariance and pseudotime covariance with a nonlinear
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function. There is little difference between the performance of the RBFRBF model

and the RBFMatérn models, which is not surprising since they have similar properties,

and the data was generated from a model with an RBF kernel.

Figure 2.16 | Power comparison of GPmeth, scMET, and Fisher’s exact test.
Receiver operating characteristic (ROC) curve plots show the statistical power of different
models to identify differentially methylated/accessible regions. The top row shows ROC
curves with a CpG/GpC density of 0.005, an MMRC of 0.5, and a diffmet window size of
600 base pairs. The bottom row shows ROC curves with a CpG/GpC density of 0.05, an
MMRC of 0.3, and a diffmet window size of 600 base pairs. The GP models that have both a
genome and a pseudotime kernel (RBFRBF (blue), RBFMatérn (orange)) perform the most
powerful in both scenarios. The GP models without a genome kernel perform more similar
to the Fisher’s exact test or the scMET model. Figure generated by Max Frank.

2.2.4 Model Calibration

As discussed above, to obtain a test statistic for differential methylation/accessibility, I

compare the marginal likelihood of a full model that allows for changes in methylation

rates over time against the likelihood of a null model that is constrained to a constant

temporal methylation rate. The obtained test statistic is the log of the ratio of

likelihoods of the full and the null model: the log-likelihood ratio (LLR). The purpose

of model calibration is to determine the distribution of likelihood ratios when the

null hypothesis is true. This allows to specify significance cutoffs that will have a

known proportion of false positive results, or false discovery rate (FDR). In other

words, this allows the computation of p-values from LLR estimates.

According to Wilks theorem (Wilks, 1938), the LLR of two nested models will

approach a chi-squared (χ2) distribution under the null as the number of observations

approaches infinity. The degrees of freedom of the χ2 distribution are determined by

the difference in the number of free parameters of the two models. This was used for
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model calibration in spatialDE (Svensson et al., 2018) and GPcounts (BinTayyash

et al., 2021).

However, this is only true in the limit of infinite data points (Greven et al., 2008)

and for strictly nested models (Dominicus et al., 2006; Self and Liang, 1987). Both of

these criteria are not fulfilled here. The models are not strictly nested since the null

model fixes the pseudotime kernel variance parameter at zero, which is at the edge of

the full model parameter space. Furthermore, the models are optimized on sparse

data, which does not guarantee that parameters are estimated perfectly. Thus, in

practice, the calibration of the model with the assumption of a χ2 null-distribution

yields conservative p-values.

Therefore, I approximated an empirical null distribution by randomly permuting real

input data. One way of obtaining this would be to use parametric bootstrapping,

i.e., obtaining an empirical null distribution for every region tested by permuting it

randomly enough times to obtain significant results. This would increase the runtime

of the model by at least 1000x to get enough samples for significant p-values when

considering multiple testing corrections.

With the assumption that the null distributions are similar for all regions, likelihood

ratios from simulated null regions can be pooled (Listgarten et al., 2013). To generate

data from the null hypothesis (i.e. no differential methylation/accessibility over time),

I permuted the calculated pseudotime values of cells and trained the null and the full

model in the same way as for differential testing (see Section 6.1.1). I found that the

pooled log-likelihood ratios can be described well with a mixture of χ2 distributions:

p(LLR | π, a, d) = πχ2
0(−LLR) + (1− π)aχ2

d(−LLR) (2.21)

Where LLR is the log-likelihood ratio of the models, π is the fraction of a χ2

distribution with zero degrees of freedom to a χ2 distribution with d degrees of

freedom and a scale parameter a.

I used scNMT-seq data of mouse-embryonic stem cells undergoing gastrulation to

calculate empirical null distributions (see Chapter 3). Specifically, I used cells during

Mesoderm development. To obtain a large enough sample to fit the χ2-mixture

distribution, I produced five random pseudotime permutations of cells for each

available enhancer and promoter region (for details on region definitions, see Section

3.2.1). I then trained all models in Table 2.1 on the permuted regions and calculated

the LLR of each full model and the respective null model. A closer inspection of

the LLR estimates revealed a clear dependency on the number of observations (Fig

2.17). This effect was stronger for permuted DNA methylation profiles than for DNA

accessibility. For a discussion of possible reasons for this, see Chapter 4.
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Figure 2.17 | Dependency of permuted LLR distribution on the number of obser-
vations. Every point represents the median negative log-likelihood ratio of the RBFRBF
model for 5 permutations of an enhancer region for methylation (left panel) and accessibility
(right panel). The x-axis is the number of observed methylation events in that enhancer
region. The black lines represent a locally weighted scatterplot smoothing (LOWESS) fit of
the data points. Figure generated by Max Frank.

Because of this dependency, I decided to separate promoter and enhancer regions

into bins according to the number of input points and fit a χ2-mixture distribution

to each of those bins separately. Furthermore, there was a clear difference in the

LLR distribution between methylation and accessibility profiles, which was partially

but not completely explained by the higher density of GpC sites compared to CpG

sites and the resulting higher number of inputs. Therefore, I also fit separate null

distributions for methylation and accessibility profiles. To fit this null distribution,

the free parameters of the χ2-mixture, π, a, d, were estimated maximum likelihood

estimation with a grid-search over the parameters. To increase the robustness of the

fit, the lowest 5% and the highest 5% quantile of the LLRs were excluded. This was

done to remove outliers in the distribution where random shuffling leads to genuinely

differentially methylated regions by chance. Figure 2.18 shows an example of the fit

of the null distribution for the RBFRBF model on enhancer accessibility.
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Figure 2.18 | Example fit of null distribution for the RBFRBF model. The top
row shows the distribution of negative log-likelihood ratios (LLR) of the RBFRBF model on
enhancer accessibility as a histogram plot. The blue line corresponds to the fitted parametric
χ2-distribution. The bottom row shows quantile-quantile plots of the expected LLR values
of the parametric distribution versus the observed LLR values from shuffled data. Every
column corresponds to a bin of input points (see column title). Note that the empirical and
theoretical distribution match closely for every bin, indicating successful calibration. Figure
generated by Max Frank.

With this approach I was able to successfully fit null distributions for every set of

regions.The parameters obtained by this fit were then used to estimate p-values of

non-shuffled regions in the actual gastrulation dataset which will be discussed in the

next Chapter.
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3 | Application of GPmeth to sc-

NMT data of Mouse Gastrula-

tion

This Chapter will discuss the application of the GPmeth model, described in Chapter

2, to real scNMT-seq data. The data used were published in Argelaguet et al., 2019b

and consists of over 1000 sequenced mouse embryonic stem cells at the gastrulation

stage of development. During this process, multipotent stem cells differentiate into

the three main germ layers of the embryo.

Section 3.1 will give an overview of previous work on this dataset.

In Section 3.2, I describe a processing strategy to infer pseudotime coordinates and

lineage association for each cell based on RNA expression. This trajectory inference

forms the basis for the subsequent analysis of the epigenome.

In Section 3.3, I will then describe the application of the GPmeth model to find

differentially methylated and differentially accessible regions during Mesoderm for-

mation (see Section 3.3.2). I benchmark the GPmeth approach in comparison with

existing tools in Section 3.3.3, describing the incremental improvements of different

components of the model. I then use the ability of the model to refine differentially

methylated regions to perform improved TF-binding motif analysis and identify the

activation timings of Mesoderm-specific TFs in Section 3.3.4. In Section 3.3.5, I inves-

tigate the temporal changes of lineage-defining enhancers, showing that for Mesoderm

development pluripotency and Ectoderm-specific enhancers get inactivated before

Mesoderm-specific enhancers are activated. Finally, I compare DNA methylation,

chromatin accessibility and gene expression time-courses to find links between those

modalities in Section 3.3.6.

3.1 Previous work

Argelaguet et al. provided the first comprehensive dataset that profiled three omics

modalities in the same cell during the pluripotency exit of mouse embryonic stem cells.
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scNMT-seq profiles RNA expression, DNA methylation, and chromatin accessibility

in the same cell. They were able to profile 1105 cells isolated from mouse embryos at

embryonic days (E) 4.5, 5.5, 6.5, and 7.5.

As expected, they find that global methylation levels of regulatory elements such as

promoters and enhancers increased from an average of 25% at E4.5 to 80% at E5.5,

while accessibility of these regions only dropped minimally during the same time

period.

They then used multi-omics factor analysis (MOFA, Argelaguet et al., 2018a) to

perform dimensionality reduction with all available modalities to find shared modality-

specific factors that drive the gastrulation process. They found that methylation and

accessibility of enhancer elements have a stronger influence on germ layer formation

than methylation and accessibility of promoter elements. They furthermore defined

lineage-specific regulatory genomic regions by performing chromatin immunoprecip-

itation with DNA sequencing (ChIP–seq) on differentiated tissues. They defined

peaks for distal H3K27ac (enhancers) and H3K4me3 (transcription start sites) that

are accessible only in Ectoderm, Endoderm, and Mesoderm, respectively. One no-

table finding was that Ectoderm-specific enhancer elements become accessible and

demethylated as early as E4.5 while Endoderm and Mesoderm enhancers only become

demethylated and accessible after E5.5. Generally, they found that differentiated

Ectoderm cells retain most of the regulatory signatures from pluripotent stem cells.

To track the temporal trajectories of chromatin accessibility and DNA methylation,

they produced a pseudotime ordering for Endoderm and Mesoderm cells and plotted

the average trajectories of both modalities for lineage-specific enhancers and promoters.

They found that there is a genome-wide inverse correlation between methylation and

accessibility indicating that these two modalities are tightly linked.

They also performed tests to identify differentially methylated and differentially

accessible regions. For this, they aggregated the CpG/GpC methylation signal in

individual cells for genomic regions of interest and performed a Fishers-exact test

between groups of cells of different embryonic days and lineages. This approach

implicitly assumes that methylation/accessibility is constant within the aggregated

regions. Furthermore, this test requires the embryonic day covariate to faithfully

capture differences in methylation over time and the annotations of regulatory regions

to be precise in order to retain statistical power. These assumptions make it difficult

to find smaller changes in methylation/accessibility that might happen gradually over

the process of gastrulation.

The goal of applying GPmeth to this dataset was to perform a more powerful test

that could identify subtle changes in DNA methylation or chromatin accessibility

over time. Furthermore, the model output can be used to refine the annotation of

important regulatory elements by identifying the specific boundaries of the differential

methylation signal. Finally, the model can be used to compare the temporal dynamic
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across modalities, opening up possibilities to speculate on regulatory mechanisms

that take place.

3.2 Lineage reconstruction and pseudotime inference

The GPmeth model requires a pseudotime coordinate associated with each cell as an

input. Therefore the first step was to do dimensionality reduction and pseudotime

inference based on the RNA expression modality of the data. Cells were already

labeled by cell type by the authors of the original publication. While the original

data included cells from E4.5 to E7.5 sequenced at daily intervals, I excluded cells

from E4.5 in this analysis, since these cells were too distinct from the rest of the cells,

which meant that no continuous pseudotime could be established.

Because the data consisted of multiple sequencing runs performed on different embryos,

there was potential for substantial batch effects that could influence the analysis. I

assessed the extent of batch effects by performing dimensionality reduction by PCA

and UMAP and plotting cells colored by cell type and embryo of origin. If there

are no substantial batch effects, one would expect cells from a single embryo to be

homogeneously distributed across all cell types of the stage at which the embryo was

sequenced. Figure 3.1, a, top row shows that the distribution is non-homogeneous,

indicating the need for batch correction. I used the bbknn (Polański et al., 2020)

method of the scanpy (Wolf et al., 2018) library to perform batch correction. Figure

3.1 a, bottom row shows the UMAP after batch correction. For a detailed description

of the RNA seq preprocessing see Section 6.2.2. The batch-corrected neighborhood

graph was used for dimensionality reduction based on diffusion components (Fig 3.1,

b, d). The first five diffusion components show the differentiation from pluripotent

Epiblast cells to the three germ layers. Interestingly there was also a clear separation

of cells within the Endoderm lineage, consisting of Gut and Notochord cells (Fig 3.1,

upper right panel).
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Figure 3.1 | Processing of single-cell RNA seq data and pseudotime estimation. (a)
Effects of batch correction with bbknn on distribution of embryos. Shown are UMAPs based
on the first 15 principal components that were mapped to a larger reference atlas (Pijuan-Sala
et al., 2019). The left column of UMAPs shows cells colored by the embryo of origin (colors not
annotated in the legend). The right column shows UMAPS annotated by stage and lineage
(based on annotations from the reference atals). Note that cells cluster by embryo in the
top right UMAP embedding. After batch correcting neighbor graph calculation with bbknn
embryos are more uniformly distributed within their lineages (bottom right). (b) Diffusion
maps of the first five diffusion components based on the batch corrected neighborhood
graph. Diffusion component one separates Mesendoderm cells from Epiblast and Ectoderm
cells. Diffusion component 2 separates Endoderm cells. Diffusion component 3 distinguishes
between Gut and Notochord cells. Diffusion component 4 separates Ectoderm from Epiblast
cells. Diffusion component 5 differentiates between early and late Mesoderm. (c) Diffusion
maps with the first two diffusion components. Cells are colored by technical covariates. There
is no clear impact of the technical covariates on the positions of cells in the diffusion map.
Figure generated by Max Frank.



3.2 Lineage reconstruction and pseudotime inference 83

Based on the first five diffusion components, I established a hierarchical branching

structure as shown in Figure 3.2, a, consisting of four lineages: Ectoderm, Mesoderm,

Gut, and Notochord. Panels b, and c show a UMAP based on the diffusion components

with cell-type annotations at different levels of granularity. I then used destiny

(Haghverdi et al., 2016), to assign a pseudotime value to each cell (Fig 3.2, d). A

sanity check for the lineage assignment was performed by checking the expression

profiles of known marker genes for each of the inferred lineages (Fig 3.2, e).

Figure 3.2 | (a) Schematic representation of the hierarchical model of cell states during mouse
gastrulation. (b) Umap based on the first five diffusion components colored by embryonic day
and lineage. (c) Umap colored by fine-grained lineage annotations. Fine-grained cell-type
annotations were obtained by transferring cell-type labels from a significantly larger single-cell
atlas with over 100,000 cells (Pijuan-Sala et al., 2019). Briefly, matching by mutual nearest
neighbors (Haghverdi et al., 2018) was used on jointly normalized expression matrices to
transfer labels from the atlas to scNMT cells. (d) Umaps colored by inferred pseudotime.
On the left cells that do not have DNA accessibility or DNA methylation measurements
are colored in grey. On the right only cells belonging to the respective lineage indicated are
colored by pseudotime. (e) Umap colored by log1p transformed expression of an example
marker gene for the four lineages. Figure generated by Max Frank.
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The pseudotime coordinates were then used as input to the GPmeth model to test

for differential methylation/accessibility in all four lineages.

3.2.1 NOMe-seq data preprocessing

Contrary to most single-cell RNA sequencing experiments, the raw data of the

methylation and accessibility modalities, produced by the single-cell NoMe-seq assay

of scNMT-seq cannot fit into the working memory of most modern computers if the

goal is to do base-level modeling. This is because there are millions of CpG/CpG sites

in the mammalian genome while there are only around 20,000 genes. Thus I store

methylation data on individual CpG/GpC sites on disk in an indexed format that

allows random access to a genomic region of interest (Li, 2011). This allows me to

efficiently load all CpG/GpC sites within a genomic window into working memory and

train the model, before loading the next window. For details of the implementation,

see Section 6.2.6. For each cell and CpG/GpC site, the stored information consists of

the number of methylated reads and the number of unmethylated reads. For reasons

discussed in Chapter 2, I transform this information into a binary signal.

I then apply filtering steps to exclude ambiguous signals both on the site level and

at the level of cells. For endogenous CpG methylation only sites in the genomic

context of WCG (W = A or T) were retained. For GpC methylation only GCH

(H = A, C, T) sites were retained. This step avoids interfering signals of the two

methyltransferases. Next, I excluded cells that had low coverage (fewer than 50.000

observed CpG sites or fewer than 500.000 GpC sites). I also excluded cells with very

low or very high methylation rates which indicates issues in the library preparation

or bisulfite conversion steps (Fig 3.3).

Figure 3.3 | Quality control metrics for scBS-seq. The left and middle panel show the
number of observed methylation events versus the global mean methylation rate for CpG
and GpC methylation respectively. Cells that were excluded in the quality control are shown
in blue and cells that passed are shown in orange. The right UMAP depicts cells that pass
the quality control criteria of all three modalities. Note that cells failing quality control are
evenly distributed across the UMAP suggesting that there is no direct biological influence on
sequencing quality. Figure generated by Max Frank.
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3.2.2 Definition of regulatory regions

To generate the input for GPmeth, I used methylation/accessibility signals in two sets

of regulatory regions, putative promoters and putative enhancer regions. Promoters

were simply defined as a genomic window of ± 2kb around the transcription start

site (TSS) of all protein-coding genes. As in Argelaguet et al., 2019b, enhancers

were defined as genomic windows marked by the histone mark H3K27ac detected

by chromatin immunoprecipitation with DNA sequencing (ChIP–seq) peaks. ChIP

seq was performed on isolated germ layers at E7.5 (Xiang et al., 2020), resulting in

a separate set of peaks for Ectoderm, Endoderm, and Mesoderm cells. From this

lineage-specific enhancers could be defined as peaks exclusively present in one of

the germ layers. Meanwhile, a comprehensive set of enhancer peaks was obtained by

taking the union of the peak annotations. The ChIP-seq peaks were then extended

by 500bp in either direction, resulting in an average window size of 2kb. In total, this

resulted in 18,347 promoter regions and 17,386 enhancer regions.

Figure 3.4 | Summary statistics of DNA methylation and accessibility in En-
hancers and Promoters. The left panel shows the number of methylation events captured
by scBS-seq for each of the assayed promoters and enhancers. As expected more methylation
events are observed for DNA accessibility due to the higher frequency of GpC sites in the
genome compared to CpG sites. Promoter regions also have more observations on average
in line with their larger window size of 4kb compared to the average 2kb size of enhancers.
The right panel shows the average methylation rate of the regulatory regions across all cells.
Note that the average CpG methylation rate, corresponding to chromatin accessibility, is
often high or low with few regions showing intermediate methylation rates. In contrast, the
average GpC methylation rate is centered around 0.4. This is likely due to the fact that each
region contains multiple nucleosome-occupied and nucleosome-free regions, which leads to an
averaging of the signal. Figure generated by Max Frank.

Figure 3.4 shows the summary statistics of the number of observed CpG and GpC

sites as well as the global observed methylation rates. As expected, the DNA methy-

lation signal is sparser than the accessibility signal. Furthermore, the average DNA
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methylation rate is more divergent than DNA accessibility. This is especially true for

promoter regions that are either mostly methylated or mostly unmethylated, while

the average accessibility rate is centered around 0.4.

GPmeth was then used to model DNA methylation and chromatin accessibility of

regulatory regions for the four lineages that were identified with pseudotime analysis.

I will first describe the results of this in the case of the Mesoderm lineage.

3.3 Epigenomic regulation during Mesoderm development

The Mesoderm is the middle of the three germ layers formed during gastrulation.

Its cells give rise to several tissues, including many organs, parts of the circulatory

system, and muscles. In this Section, I will discuss the findings of applying GPmeth to

this lineage. Note that I am discussing the Mesodermal lineage first, as an illustrative

example, but the GPmeth methodology will remain the same for the other three

lineages that will be described in Section 3.4.

In total, 415 cells that were sequenced with scNMT-seq mapped to the Mesoderm

lineage (Fig 3.2, d,e). Of those, 189 cells were classified as epiblast, 48 as primitive

streak, and 178 as Mesoderm cells by mapping RNA expression profiles to a large

single-cell atlas (Pijuan-Sala et al., 2019). These cells stem from embryos at E6.5 and

E7.5, during which pluripotent epiblast cells undergo gastrulation. Note that at this

stage, the global wave of demethylation and remethylation is completed, and changes

in regulatory activity are now cell-type specific.

I applied GPmeth to all 18,347 promoter regions and 17,386 enhancer regions defined

above to test for differential DNA methylation and DNA accessibility during Mesoderm

formation.

3.3.1 Model output

For each regulatory region, GPmeth fits a model of methylation rate based on the

binarized CpG/GpC methylation observations. For details of the fitting process, see

Chapter 2. While GPmeth has multiple options for kernel parametrization, in this

case, I used the RBFRBF kernel that allows for nonlinear change of methylation rate

across the genome and pseudotime. This model can be used to test if the methylation

rate within that region changes over pseudotime. It can also locate the exact subregion

where that change in methylation rate occurs.

Figure 3.5 shows an example output of GPmeth for the promoter and proximal

enhancer element of a well-known Mesoderm-specific transcription factor Mesp2.

During Mesoderm formation, the promoter of Mesp2 is demethylated in a narrow

region around the transcription start site (TSS) that GPmeth identifies to be around

400bp wide. Concurrently, the accessibility of that same region increases during

Mesoderm formation before decreasing again in late-stage Mesoderm cells. 12kb
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upstream of the Mesp2 TSS, there is a putative enhancer region marked by a

H3K27ac ChIP-seq peak. Interestingly, this enhancer region does not change in the

center of the genomic window. Instead, the DNA methylation rate decreases, and

DNA accessibility increases at the flanks of this region. GPmeth identifies this as two

separate subregions.

Figure 3.5 | Example output of the GPmeth model for Mesp2. The UMAP plot on the
left depicts the pseudotime estimates for each cell of the Mesoderm lineage. These pseudotime
estimates correspond to the position of each cell on the y-axis of the model output plots on
the right. The right panel consists of GPmeth predictions for DNA methylation (top row)
and accessibility (bottom row) for the gene promoter (right column) and an enhancer element
(left column). The x-axis of the plots depicts the genomic position, with 0 corresponding to
the center of the region. The scatterplot depicts the input data to the model measured by
scBS-seq, where blue indicates unmethylated sites and red indicates methylated sites. The
contours correspond to the posterior mean prediction of the methylation rate by the GPmeth
model. Underneath the scatterplot, the blue line indicates the methylation rate change over
the pseudotime of every genomic location predicted by the model. The blue-shaded regions
indicate the 95% confidence interval around that prediction. Grey-shaded areas span genomic
regions, where the 95% confidence interval of methylation rate change is above a threshold
of 0.3. Figure generated by Max Frank.

This example shows how GPmeth can aid in generating hypotheses about gene

regulation. The identified regions of differential methylation/accessibility present

possible targets for follow-up experiments that could establish causal relationships

between the different modalities. In the next Sections, I will discuss the results of

running GPmeth on the complete set of promoters and enhancers.
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3.3.2 Detecting DNA methylation/accessibility changes during

Mesoderm development

To detect differential methylation in promoters and enhancers during Mesoderm

development, I compared the likelihoods of a full model with an RBFRBF kernel

against a null model with a ConstantRBF kernel (see Section 2.1.2). The RBFRBF

kernel allows for methylation rate changes across the genomic region and pseudotime,

while the ConstantRBF model only allows for methylation rate changes across the

genomic region. The logarithm of the likelihood ratio (LLR) of these models is then

used as a test statistic for the hypothesis that the methylation rate is changing

over pseudotime. This statistic is then compared to a set of permuted regions, as

described in Section 2.2.4 to ensure accurate p-values for each tested region. P-values

were then corrected for multiple hypothesis testing according to the procedure of

Benjamini-Hochberg (Benjamini and Hochberg, 1995). While the p-value determines

the confidence of the model that there is a differential methylation/accessibility event

within the region, it does not directly tell the user about the effect size of that

differential event, i.e., the methylation rate change. In Section 2.1.3, I discussed how

GPmeth estimates the maximum methylation rate change (MMRC) for every position

in the tested region. The highest MMRC for every region is a good estimate of the

magnitude of differential methylation and can be used as an additional cutoff to filter

the results. This can be thought of analogously to defining a fold-change cutoff when

testing for differential gene expression. The MMRC estimate can be seen in Figure 3.5

as the blue line underneath the model output plots. Because the output of GPmeth

includes uncertainty estimates, I also obtained conservative estimates of the MMRC

by taking the lowest estimation of the 95% confidence interval (CI) for this measure.

I define differentially methylated regions as regions that satisfy the following two

criteria:

1. The LLR test results in a BH-adjusted p-value smaller than 0.1

2. The MMRC is larger than 0.3. In other words, the model is confident in detecting

a methylation rate change of more than 30%. This can be thought of, as the

equivalent of a fold-change cutoff in differential gene expression testing (Love

et al., 2014).

3.3.2.1 Differentially methylated regions

Running GPmeth on the methylation profiles of 18,347 promoter regions resulted

in 507 significantly differentially methylated regions, of which 190 regions had a

maximum methylation rate change (MMRC) of 0.3 or greater (Fig 3.6, left). In

contrast, out of 17,385 enhancer methylation profiles, GPmeth found 2,958 regions

to be significantly differentially methylated, of which 2478 had an MMRC value of

more than 0.3 (Fig 3.6, right). This indicates that promoter methylation may not be

the main driver of gene regulation during gastrulation. Enhancer methylation seems
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to play a larger role in comparison. This observation was also made by Argelaguet

et al., 2019b, with a global analysis using MOFA (Argelaguet et al., 2019a).

Figure 3.6 | Differentially methylated promoters and enhancers during Mesoderm
development. Maximum methylation rate change (MMRC) on the x-axis vs. significance
on the y-axis (GPmeth -log10 p-value) during Mesoderm development. The maximum
methylation rate change depicted corresponds to the maximal difference between the maximum
and minimum model predictions at every point in the genomic window. The left panel are
promoter regions, the right panel are enhancer regions. The horizontal dashed line corresponds
to a significance cutoff of FDR<0.1 after BH-adjustment for multiple testing. The vertical
dashed line represents an MMRC cutoff of 0.3. Figure generated by Max Frank.

3.3.2.2 Differentially accessible regions

GPmeth can be applied to chromatin accessibility data from scBS-seq (GpC methyla-

tion) without modifications from the way it is applied to endogenous methylation

data. However, since there are roughly ten times more GpC sites in the genome, the

density of observations is higher. The presence of nucleosomes and their interplay

with regulatory elements results in methylation rate trajectories that are fundamen-

tally different from endogenous methylation. For these reasons, I used a separate

calibration for the differential accessibility tests that is based on permutations of

GpC methylation data (see Section 2.2.4).

With this calibration, running GPmeth on the chromatin accessibility profiles of 18,347

promoter regions resulted in 875 differentially accessible regions during Mesoderm

development, of which 380 regions had an MMRC of 0.3 or greater (Fig 3.7, left). In

contrast, out of 17,385 enhancer accessibility profiles, GPmeth found 2700 regions to

be significantly differentially accessible, of which 2327 had an MMRC value of more

than 0.3 (Fig 3.7, right). As with endogenous methylation, promoters seem to be

less regulated by chromatin accessibility compared to enhancer elements during the

process of Mesoderm formation.
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Figure 3.7 | Differentially accessible promoters and enhancers during Mesoderm
development. Maximum methylation rate change (MMRC) on the x-axis vs. significance on
the y-axis (GPmeth -log10 p-value) during Mesoderm development. Mesoderm development.
The maximum methylation rate change depicted corresponds to the maximal difference
between the maximum and minimum model predictions at every point in the genomic
window. The left panel are promoter regions, the right panel are enhancer regions. The
horizontal dashed line corresponds to a significance cutoff of 0.05 FDR after BH-adjustment
for multiple testing. The vertical dashed line represents an MMRC cutoff of 0.3. Figure
generated by Max Frank.

3.3.3 Model benchmark and comparison to other methods

In Chapter 2, I showed with synthetic data the power benefits of the GPmeth model,

which should result in a larger fraction of statistically significant regions on real data.

In this Section, I will show that GPmeth identifies more differentially methylated and

accessible regions during Mesoderm development compared to other methods. I will

highlight the two main advantages over other models, which are:

• Using a flexible genome kernel to model methylation rate with base-pair resolu-

tion

• Using a flexible nonlinear temporal kernel to model methylation rate over time

3.3.3.1 Benefits of adding a genome kernel

In this Section, I will demonstrate the benefits of the inclusion of a genome kernel

into the GPmeth model. As discussed above, the inclusion of a genome kernel

allows GPmeth to refine broader genomic input windows into subregions where

differential methylation/accessibility occurs. Furthermore, a genome kernel should

provide increased statistical power for detecting differential methylation when the

subregion is small compared to the size of the full input window. I have shown this

on simulated data in Section 2.2.2. To demonstrate the benefits on real data, I am

comparing the full GPmeth model with a nonlinear kernel in genome and pseudotime
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space (the RBFRBF model) against a model that still has a nonlinear kernel to model

temporal changes but is constant in genome space (ConstantRBF ). This comparison

allows for the isolation of the benefits of including the genome kernel alone. Figure

3.8 shows example model fits of these four models for the promoter accessibility

trajectory of Mesp2. Since the differentially accessible subregion in the center of

the promoter is relatively small (1̃50bp), only the full GPmeth (left panel) model

predicts an accessibility rate change larger than 0.3 for this region, since for the

other models the signal is diluted by non-changing flanking GpC sites. Therefore, the

models without genome kernels systematically underestimate the true rate of change

in accessibility.
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Figure 3.8 | Example model fit of Mesp2 promoter accessibility with and without
genome kernel. Contour plots of GPmeth predictions for chromatin accessibility rate ρ in
the promoter of the Mesp2 gene. The left panel depicts the output of GPmeth parametrized
with an RBFRBF kernel, and the right panel with a ConstantRBF kernel that does not
allow for variability across the genomic axis. The x-axis of the GPmeth plots depicts the
genomic position, with 0 corresponding to the transcription start site. The scatterplot depicts
the input data to the model measured by scNMT-seq, where blue indicates unmethylated
sites and red indicates methylated sites. The contours correspond to the posterior mean
prediction of the methylation rate ρ by the GPmeth model. Underneath the scatterplot,
the blue line indicates the maximum methylation rate change over pseudotime (MMRC)
of every genomic location predicted by the model. The blue-shaded regions indicate the
95% confidence interval around that prediction. Grey-shaded areas span genomic regions
where the predicted MMRC is greater than 0.3. The panel on top represents the pseudotime
trajectory of Mesoderm formation. Figure generated by Max Frank.

Next, these models were compared with their respective null models (see Chapter 2) to

calculate the LLR and obtain significance estimates for differential accessibility. Figure

3.9 shows the p-value versus MMRC scatterplots of the four models for promoter and

enhancer accessibility during Mesoderm formation.
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Figure 3.9 | Differential accessibility testing with and without genome kernels.
Maximum methylation rate change (MMRC) on the x-axis vs. significance on the y-axis
(GPmeth -log10 p-value) of promoter (left column) and enhancer (right column) accessibility
during Mesoderm development. Rows correspond to different models. The horizontal dashed
line corresponds to a significance cutoff of 0.1 FDR after BH-adjustment for multiple testing.
The vertical dashed line represents an MMRC cutoff of 0.3. Dark grey dots are above the
FDR threshold and red dots mark differentially accessible regions with MMRC larger than
0.3. Figure generated by Max Frank.

The RBFRBF kernel finds the highest number of significantly differential enhancers

and promoters compared to all other models. When adding a minimum MMRC of 0.3,

the other models find almost no differential regions. The exact numbers of regions

found are listed in Table 3.1.

Promoters H3K27ac Enhancers

FDR FDR+MMRC FDR FDR+MMRC

RBFRBF 875 380 2700 2327

ConstantRBF 86 1 1585 71

Table 3.1 | Number of promoter and enhancer regions found by models with and without a
genome kernel. Numbers in the Significant columns have a BH-adjusted p-value smaller than
0.1. Number in the Significant + MMRC column have a BH adjusted p-value smaller than
0.1 and a MMRC larger than 0.3

To compare the models directly, Figure 3.10 shows p-values and MMRC estimates

of the different models for enhancer accessibility. Assuming successful calibration

and equal performance of all models, one would expect points-region estimates to

be scattered around the diagonal identity line. In all comparisons, the full GPmeth

models identify more regions to be significantly differentially accessible and many
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more regions to have MMRCs over 0.3. Notably, the regions that were only identified

by the comparison models (orange points) are mostly close to significance for the full

GPmeth model. Conversely, there are regions that are highly significant for the full

GPmeth model but have very high p-values in the comparison models (blue points).

Figure 3.10 | Comparison of models with and without genome kernels for finding
differentially accessible enhancers. The top row depicts the −log10 p-values (BH adjusted)
of the RBFRBF model (y-axis) vs. a comparison model on the x-axis. Horizontal and vertical
dashed lines indicate p-value cutoffs at 0.1 FDR. The diagonal line is the identity line and
means equal significance. Each dot represents the accessibility trajectory of an enhancer
region during Mesoderm development. Blue dots are only found to be differential by the
RBFRBF model, orange dots only by the comparison model, and green dots by both models.
The bottom row depicts the same comparison in terms of MMRC. Figure generated by Max
Frank.

If adding a genome kernel to the model increases statistical power by enabling the

model to find smaller differential subregions, one would expect that the regions only

found by the full GPmeth model to be smaller on average compared to regions that

are found by the comparison models as well. To investigate this I visualized the

difference in p-values of these models for different sizes of subregions found by the full

GPmeth model (Fig 3.11). While subregions larger than 200bp tend to have similar

p-values in the full GPmeth model and the models without a genome kernel, the

smaller regions are often not detected by the comparison models, i.e. there is a large

negative difference in p-values.
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Figure 3.11 | Smaller regions of differential accessibility less likely to be detected
without a genome kernel. Each plot depicts the difference in p-values (BH adjusted)
between the GPmeth RBFRBF model and a comparison model (in the plot titles) without a
genome kernel on the y-axis and the size of the refined subregion predicted by the RBFRBF
model on the x-axis. Figure generated by Max Frank.

3.3.3.2 Benefits of a nonlinear temporal model

The second point that differentiates GPmeth from standard statistical models to

test for differential methylation is the use of a nonlinear kernel to describe smooth

methylation rate changes over time. To investigate whether a nonlinear pseudotime

kernel is beneficial, I compared the RBFRBF (Fig 3.12, left) model against three

models with a different temporal kernel. The first model, RBFLinear (Fig 3.12, center

left), has a linear kernel to model temporal changes. The second and third models

have a categorical kernel that models temporal changes and an RBF kernel in the

genome dimension. The RBFEarlyLate model averages the methylation signal of

early cells at the beginning of the pseudotime trajectory and late cells at the end

(Fig 3.12, center right). The RBFFirstLast model does the same but takes only the

first and last 10% of cells along pseudotime into account to model the beginning and
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end stages of the trajectory (Fig 3.12, right). These two models were included as

an analog to more traditional differential testing ideas that compare groups of cells.

An example fit of these four models to the Mesp2 promoter can be seen in Figure

3.12. This time RBFRBF and RBFLinear predict accessibility rate changes above

0.3, and RBFEarlyLate just falls shy of the 0.3 threshold. One detail to note is that

the RBFRBF model predicts accessibility to first increase but then decrease slightly

again in mature Mesoderm cells. By contrast, the RBFLiner model predicts a strict

increase which is due to the fact that the linear kernel does not allow for up- and

down-shifts. Finally, the RBFFirstLast does not detect major changes in accessibility.

This is due to the fact that it only includes the earliest cells with lower accessibility

and the last cells, in which accessibility decreased again.

Figure 3.12 | Example model fit of Mesp2 promoter accessibility with different
pseudotime kernels. Contour plots of GPmeth predictions for chromatin accessibility rate
ρ in the promoter of the Mesp2 gene. The left two panels depict the output of GPmeth
parametrized with an RBFRBF and an RBFLinear kernel, respectively. The scatterplot
depicts the input data to the model measured by scNMT-seq, where blue indicates unmethy-
lated sites and red indicates methylated sites. The x-axis depicts the genomic position, with
0 corresponding to the transcription start site. The contours correspond to the posterior
mean prediction of the methylation rate ρ by the GPmeth model. Underneath the scatterplot,
the blue line indicates the maximum methylation rate change over pseudotime (MMRC)
of every genomic location predicted by the model. The blue-shaded regions indicate the
95% confidence interval around that prediction. Grey-shaded areas span genomic regions
where the predicted MMRC is greater than 0.3. The panel on top represents the pseudotime
trajectory of Mesoderm formation. The RBFLinear model restricts ρ to change linearly
across pseudotime. The right two panels show the outputs of the ConstantEarlyLate and the
ConstantFirstLast models, respectively. These models group cells according to a pseudotime
cutoff. The pseudotime grouping of cells is depicted in the panel above the model output
plots. In the model output plots, the x-axis represents the genomic dimension, and the y-axis
represents the methylation rate ρ. Points are the means of measurements of individual GpC
sites across cells in a pseudotime group, and their size indicates the number of cells that the
mean is based on. Figure generated by Max Frank.

The nonlinear kernel allows the most flexibility in fitting methylation/accessibility

rates, but this also comes with the necessity of strict calibration to avoid producing
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false positives in differential testing due to overfitting. Therefore, simpler temporal

kernels, such as the ones in the comparison models, are not necessarily less powerful

if the actual methylation/accessibility rate changes fit their structure. In the case

of the mouse gastrulation dataset, the temporal sampling of cells was likely not

uniform, leading to an undersampling in the intermediary stages between Epiblast

and differentiated germline cells (see Section 3.2). This means that most of the signal

is concentrated in the early and late parts of the pseudotime trajectories, which makes

it hard to find regions that have methylation/accessibility rate changes that increase

and then decrease or vice versa. Therefore, a linear or categorical temporal kernel

should, in fact, be a good option for this dataset. I therefore wanted to investigate

if the nonlinear kernel is still competitive with the simpler alternatives. Figure 3.13

shows the results of differential testing of enhancer accessibility during Mesoderm

development for the four models described above.
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Figure 3.13 | Differential accessibility testing with different pseudotime kernels.
Maximum methylation rate change (MMRC) on the x-axis vs. significance on the y-axis
(GPmeth -log10 p-value) of promoter (left column) and enhancer (right column) accessibility
during Mesoderm development. Rows correspond to different models. The horizontal dashed
line corresponds to a significance cutoff of FDR<0.1 after BH-adjustment for multiple testing.
The vertical dashed line represents an MMRC cutoff of 0.3. Red dots mark differentially
accessible regions. Figure generated by Max Frank.

In this example, the model with the linear temporal kernel finds the highest number

of differentially accessible enhancers (2783) followed by the RBFRBF model with

2327, the RBFEarlyLate model with 1060, and the RBFFirstLast model with 306.

For promoter regions, the RBFRBF model finds 380, which is slightly more regions

than the 373, the RBFLinear model found. The RBFEarlyLate and RBFFirstLast

models both found 51 differentially accessible promoters. The detailed numbers of

regions found with and without MMRC cutoffs can be found in Table 3.2.
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Promoters H3K27ac Enhancers

FDR FDR+MMRC FDR FDR+MMRC

RBFRBF 875 380 2700 2327

RBFLinear 559 373 3422 2783

RBFEarlyLate 112 51 2557 1060

RBFFirstLast 53 51 306 306

Table 3.2 | Number of promoter and enhancer regions found by models different pseudotime
kernels. Numbers in the Significant columns have a BH-adjusted p-value smaller than 0.1.
Number in the Significant + MMRC column have a BH adjusted p-value smaller than 0.1
and an MMRC larger than 0.3

To investigate the differences between the models, I compared their significance

and MMRC estimates on the same enhancer regions (Fig 3.14). This comparison

revealed that the RBFLinear kernel seems to have a slightly more favorable calibration

compared to the RBFRBF model. This can be seen in the top left scatterplot of Figure

3.14 where the p-values of the two models are compared. The points show a consistent

deviation from the diagonal unity line, which means that there is a consistent bias

towards lower p-values for the RBFLinear model. In fact, looking at regions that only

the RBFLinear model identified as significant (orange points), they are all close to

the unity line, meaning that they fell short of significance in the RBFRBF model by

only a small margin. Conversely, the regions only identified by the RBFRBF model

(blue points), albeit fewer, are spread further from the unity line, meaning that they

would not have been able to be identified by the RBFLinear model even with a looser

significance cutoff. The same phenomenon is true for the MMRC estimates of the

same models (Fig 3.14, bottom left). Visual investigation of the regions only found

by the RBFRBF model revealed that the accessibility dynamics in these enhancers

mostly followed an "up-down" dynamic where the accessibility rate first rises and

later decreases again (data not shown). This was in line with expectations since the

linear pseudotime kernel is not able to model these dynamics accurately.

The comparison of the RBFRBF model with the RBFEarlyLate model (Fig 3.14,

middle column) revealed good agreement between the models in terms of significance

estimation, but showed that the nonlinear pseudotime kernel has larger MMRC

estimates for some enhancers. This is expected for those regions where the averaging

of early and late cells results in a dilution of signal, i.e. where temporal dynamics

cannot be captured accurately with these categories. The comparison of the RBFRBF

model with the RBFFirstLast model (Fig 3.14, right column) showed that the

RBFFirstLast model is systematically underpowered, due to the lower number of

data points included in the model.
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Figure 3.14 | Comparison of models with different pseudotime kernels for finding
differentially accessible enhancers. The top row depicts the −log10 p-values (BH adjusted)
of the RBFRBF model (y-axis) vs. a comparison model on the x-axis. Horizontal and vertical
dashed lines indicate p-value cutoffs at 0.1 FDR. The diagonal line is the identity line and
means equal significance. Each dot represents the accessibility trajectory of an enhancer
region during Mesoderm development. Blue dots are only found to be differential by the
RBFRBF model, orange dots only by the comparison model, and green dots by both models.
The bottom row depicts the same comparison in terms of MMRC. Figure generated by Max
Frank.

These comparisons showed that the GPmeth model with an RBFRBF kernel is

applicable, even in situations where the temporal changes of methylation/accessibility

are mostly captured well by more simple models, while having the advantage of

detecting more complex temporal changes, such as the ones shown in Figure 3.12.

Next I compared the GPmeth model to scMet, an existing tool to test for differential

methylation in single-cell data.

3.3.3.3 Comparison to scMet

As discussed in Section 1.5, there are currently few tools that are explicitly designed to

detect differential methylation in single-cell data, and none that are designed to model

these changes across a continuous time variable. Therefore the closest comparison is

with scMet (Kapourani et al., 2021), which models methylation/accessibility rate and

variance in single-cell epigenomic data for predefined genomic windows. In Section

2.2.2, I showed that GPmeth was more powerful than scMet on simulated data. To

compare the performance on real scNMT-seq data, I applied scMet to the same

promoter and enhancer regions that GPmeth was applied to. Because scMet tests

between predefined groups of cells, I defined an "early" and a "late" group, analogously

to the EarlyLate pseudotime kernel discussed above, by placing a cutoff in pseudotime

at 0.3. This results in the "early" group consisting mainly of E6.5 Epiblast and E6.5

Primitive Streak cells and the late group consisting of E6.5 Mesoderm and E7.5

Primitive Streak and Mesoderm cells.
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Figure 3.15 | Comparison of significance estimates of GPmeth and scMet. Scatter-
plots depict the −log10 p-values (BH adjusted) of the RBFRBF model (y-axis) vs. −log10
(1-tail probability) of scMet on the x-axis. Horizontal and vertical dashed lines indicate
cutoffs at FDR < 0.1. The diagonal line is the identity line and represents equal significance.
Each dot represents the methylation (top row) or accessibility (bottom row) trajectory of
enhancer (left column) or promoter (right column) regions during Mesoderm development.
Blue dots are only found to be differential by the RBFRBF model, orange dots only by the
scMet model, and green dots by both models. Figure generated by Max Frank.

The scatterplots in Figure 3.15 show the comparison of the significance estimates

between GPmeth on the y-axis and scMet on the x-axis. In this setting, scMet finds

almost no significantly differentially methylated or accessible promoters or enhancers.

This highlights the power of the GPmeth model in this setting. Importantly, this

test gives an advantage to GPmeth in some ways. Firstly, the widths of the enhancer

and promoter regions were chosen quite large (average 2kb and 4kb respectively),

so that any methylation/accessibility changes in close proximity can be captured.

Because scMet averages over the genome dimension, this dilutes the signal if the

actual genomic window of differential methylation/accessibility is small. Thus, one

could choose smaller regions to improve the performance of scMet, but this comes at

the risk of missing signal at the edges of the windows. Secondly, the temporal cutoff

to separate "early" and "late" cells could have been sub-optimal and result in the

averaging of cells with different methylation/accessibility profiles. However, it should

be noted that any choice of cutoff will be sub-optimal if changes over pseudotime are

truly continuous in nature.
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Figure 3.16 | Comparison of MMRC estimates of GPmeth and scMet. Scatterplots
depict the MMRC estimate of the RBFRBF model (y-axis) vs. scMet on the x-axis. Horizontal
and vertical dashed lines indicate an MMRC of 0.3. The diagonal line is the identity line.
Each dot represents the methylation (top row) or accessibility (bottom row) trajectory of
enhancer (left column) or promoter (right column) regions during Mesoderm development.
Blue dots have a MMRC > 0.3 only with the RBFRBF model, orange dots only with the
scMet model, and green by both models. Figure generated by Max Frank.

Figure 3.16 shows the MMRC estimates of GPmeth on the y-axis and scMet on

the x-axis. scMet consistenly estimates lower changes in methylation/accessibility

rates compared to GPmeth for all scenarios. This can also be expected for the same

reasons as for the significance estimates. Note that this comparison of models does

not directly show increases of statistical power or accuracy of the GPmeth model

compared to scMet, since there is no ground truth available for these data. However,

in the rest of this Chapter I will show the biological validity of the differentially

methylated and differentially accessible regions found by GPmeth.

3.3.4 Analysis of refined subregions found by GPmeth

A major benefit of GPmeth is the ability to refine the originally provided genomic

windows to get insights into where precisely the changes in methylation rate are

occurring. For this purpose, I evaluated the posterior predictions of GPmeth for every

region by taking 2000 samples from the trained models. This allows the quantification

of the mean and uncertainty of the model for any point in the genome and along

pseudotime. I define differentially methylated subregions as widows in the genome

axis where the 5% CI of all predictions has a methylation rate change over pseudotime

larger than 0.3 (Fig 3.5, grey shaded areas). Note that this threshold can be set by

the user and is arbitrary. In this case, 0.3 seems to provide a sensible threshold for

filtering out biologically relevant signals.

Figure 3.17 shows an overview of the refined subregions identified this way. Most

differentially methylated enhancers and promoters contain a single subregion (note



3.3 Epigenomic regulation during Mesoderm development 103

the log-scale in Figure 3.17, top left). The identified subregions have an average width

of 163 bp (Fig 3.17, top right). Note that this value is sensitive to the specification

of the model parameters, especially to the setting of the genome kernel length scale.

Therefore, the subregion width should mostly be used for comparisons of different

regions that were tested with the same model specifications. When comparing the

widths of promoter and enhancer subregions, no significant differences were observed

(promoter mean width: 135bp, enhancers mean width: 165bp, p-value=0.11, t-test on

log-transformed widths). When comparing the relative positioning of the identified

subregions (Fig 3.17, bottom left), enhancer subregions are distributed around the

center of the window, whereas promoter subregions are close to uniformly distributed

across the window. This is surprising since one would expect differential methylation

that directly influences gene expression via the promoter to be close to the TSS

of the gene and, therefore, close to the 0 position. This could indicate that some

of the identified subregions are, in fact, different genomic elements that happen

to be in close proximity to the genes TSS. This would be another indicator that

promoter methylation is not a main driver in gastrulation. Finally, we can inspect

the methylation rate change prediction of the model within the found subregions (Fig

3.17, bottom right). This is taken as an average of all predictions of the model that

fall into the subregion. Promoters have significantly lower differential methylation

rates than enhancers (mean MMRC of promoters: 0.22, mean MMRC of enhancers:

0.31, p-value=3.1e−31, t-test on log-transformed rates).
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Figure 3.17 | Summary statistics of differentially methylated refined regions. The
top left panel shows the number of subregions that are found by GPmeth for every genomic
window with significant differential methylation. Note the log scale on the y-axis. The top
right panel shows the distribution of subregion widths, i.e., the width of the genomic interval
where the 95% CI MMRC is higher than a specified threshold (in this case 0.3). Most regions
are smaller than 300bp (average 163bp), indicating that averaging methylation signal over
larger genomic windows can dilute the signal. The bottom left panel shows the positioning of
the center of the identified subregions relative to the center of the input genomic window.
With perfect region annotations, this histogram should be a narrow Gaussian distribution
around zero. The distribution of promoter subregions shows that there is no preference for
differential methylation close to the TSS of the gene. Enhancer subregions are distributed
around the center of the window but show a substantial spread, highlighting the need for
flexible models that can tolerate inaccurate region inputs. The bottom right panel shows the
average 95% CI MMRC of each identified subregion. Note that this is a conservative estimate
of the true change in methylation rate since it includes the uncertainty of the GPmeth model.
It can serve as a convenient filtering criterion to exclude regions with small or uncertain
effect sizes. Figure generated by Max Frank.

Figure 3.18 shows an overview of the refined subregions found by GPmeth. Again,

most differentially accessible enhancers and promoters contain a single subregion

(note the log-scale in Figure 3.18, top left). The identified subregions have an average

width of 120 bp (Fig3.18, top right). This is shorter than the 163 bp average window

size that was identified for differentially methylated regions. However, this could be

due to the higher density of GpC sites. When comparing the widths of promoter and

enhancer subregions, there were slight, but not significant differences between the two

(promoter mean width: 97bp, enhancers mean width: 122bp, p-value=0.06, t-test on

log-transformed widths). The positioning of the identified enhancer subregions (Fig

3.18, bottom left) is similar to the positioning of differentially methylated subregions.

However, for promoters, there is now also an enrichment in the center of the genomic

window around the TSS of the gene. This was not the case for endogenous methylation.

This could mean that there is a small subset of genes that will be regulated by promoter

accessibility during Mesoderm formation. In fact, one of those genes is be Mesp2,

which was shown in Figure 3.5. Furthermore, if we inspect the GpC methylation rate

change prediction of the model within the found subregions (Fig 3.18, bottom right),
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promoters have roughly equal differential methylation rates than enhancers (mean

MMRC of promoters: 0.34, mean MMRC of enhancers: 0.33, p-value=0.24, t-test on

log-transformed rates).

Figure 3.18 | Summary statistics of differentially accessible refined regions. The
top left panel shows the number of subregions that are found by GPmeth for every genomic
window with significant differential accessibility. Note the log scale on the y-axis. The top
right panel shows the distribution of subregion widths, i.e., the width of the genomic interval
where the 95% CI MMRC is higher than a specified threshold (in this case, 0.3). Most regions
are smaller than 300bp (average 120bp), indicating that averaging methylation signals over
larger genomic windows can dilute the signal. The bottom left panel shows the positioning of
the center of the identified subregions relative to the center of the input genomic window.
The bottom right panel shows the average 95% CI MMRC of each identified subregion. Figure
generated by Max Frank.

The capability of GPmeth to refine input regions opens up interesting avenues for ex-

perimental follow-ups that need precise boundaries of where methylation/accessibility

changes happen. To verify, whether the refined regions are biologically relevant, I

performed a transcription factor binding site analysis.

3.3.4.1 Transcription factor binding site enrichment

Transcription factors (TFs) are important drivers of gastrulation and embryonic

development(Meissner, 2010). They act by recognizing nucleotide patterns and binding

DNA, inducing the transcription or repression of nearby genes. Transcription factors

also have a complex link to DNA methylation and chromatin accessibility (Hemberger

et al., 2009). Because many transcription factors have both well-established roles

during embryo development and known preferences for nucleotide sequences (binding

motifs), I wanted to investigate if the differentially methylated/accessible regions

found by GPmeth have an enrichment of relevant TF binding motifs.

To this end, I first extracted all subregions that GPmeth identified as differentially

accessible during Mesdoerm development and clustered their pseudotemporal tra-

jectories. There were four main trajectories that clustered together, two groups of
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enhancers where chromatin accessibility increased with Mesoderm development and

two groups where chromatin accessibility decreased (Fig 3.19, a). Each of these

groups could further be subdivided into trajectories that change accessibility early

in the pseudotime (at the primitive streak to early Mesoderm transition) and those

that change later on (at the mature Mesoderm stage). I termed these four clusters

"early up", "late up", "early down", and "late down" respectively. I then performed

an enrichment analysis for TF binding motifs found in the JASPAR CORE verte-

brate database (Rauluseviciute et al., 2024) for each cluster. Each trajectory cluster

showed enrichment of distinct motifs (Fig 3.19,b,c). Notably, enhancer subregions

where GPmeth identified a decrease in accessibility are enriched in known Ectoderm

and pluripotency TFs, such as POU5F1, SOX2, and SP8. This is in line with the

observation in Section 3.3.2.1 that Ectoderm-defining enhancers are decreasing in

accessibility during Mesoderm development. Conversely, subregions with increasing

chromatin accessibility are enriched in known Mesoderm-specific TF binding sites,

such as GATA4, FOXP2, EOMES, and TWIST1. Interestingly, while both down-

regulated trajectory clusters are enriched in similar TF binding sites (Fig 3.19,c,

green lines), the two upregulated clusters have distinct enrichment patterns (Fig

3.19,c, blue and purple lines). Enhancer subregions that increase early are more

enriched for the members of the T-box family of transcription factors, which are

essential for the migration of nascent Mesoderm cells in the primitive streak (Costello

et al., 2011; Papaioannou, 2014). In particular, EOMES was shown to control the

expression of Mesp1. Subregions with a late accessibility increase are mainly enriched

in GATA transcription factors. The GATA family of transcription factors is known

to be involved in the formation of the endocrine system (Viger et al., 2008), which

is one of the tissues that emerges from Mesoderm cells. This points to the intricate

temporal control of gene expression that is modulated by a network of lineage-defining

transcription factors and the epigenetic modifications of DNA regions they bind to.
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Figure 3.19 | Transcription factor enrichment of differentially accessible enhancers.
a) k-means clustering of pseudotime trajectories. Each grey line represents the average
accessibility rate ρ within a significant subregion identified by GPmeth. Dark red lines are the
mean trajectory of each cluster. b) Transcription factor motif enrichment per cluster(Fisher’s
exact test, -log(p value) BH-adjusted, y-axis) versus differential RNA expression (GPcounts,
-log(q-value) , x -axis) of the transcription factor. Red points are significant at FDR < 0.05
in bot enrichment and differential RNA expression. c) Scaled view of Transcription factor
motif enrichment per cluster. Green lines are specifically enriched in the early down and late
down clusters (FDR < 10−17). Blue lines and purple lines are specifically enriched in the
early up and late up clusters (FDR < 10−23) respectively. Figure generated by Max Frank.

Since these results were in line with known gastrulation biology, I wanted to investigate

if the same results could have been obtained without GPmeth’s ability to identify

refined subregions. To this end, I repeated the analysis with the same clustering of

enhancer regions but instead provided the DNA sequences of the whole input genomic
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windows to the enrichment instead of the sequences of the subregions. Figure 3.20

shows the enrichment for the whole enhancer regions by cluster. Apart from some more

spurious enrichments, with this analysis, the effect of specific enrichment depending on

the trajectory was lost. This is a good indicator that the refined subregions identified

by GPmeth are highly likely to have functionally relevant roles in gene regulation.

Figure 3.20 | Transcription factor enrichment of differentially accessible full
enhancer regions. Scaled view of transcription factor motif enrichment per accessibility
pseudotime trajectory cluster (Fig 3.19). Lines are colored the same as in the Figure above
and represent cluster-specific enrichment found with the GPmeth 0.02855 workflow. Note
that all lines are close to parallel, indicating that the enrichment is identical to the same for
all four clusters. Figure generated by Max Frank.

Next I investigated the TF binding site enrichment in enhancers that are differentially

methylated during Mesoderm formation. Again, 4 clusters were identified following

the same temporal patterns as differentially accessible enhancers. Figure 3.21 shows

the results of the enrichment analysis. Here, the trajectories where the methylation

rate increased over time showed enrichment for Ectoderm and pluripotency enhancers.

Interestingly binding motifs of regions in the early up trajectory include MAX and

MYC, TFs present in pluripotent stem cells, whose binding is known to be impacted

by DNA methylation (Cusack et al., 2020; Domcke et al., 2015). In enhancers that get

methylated later, SOX3, SOX6, and SOX15 of the SOX family of TFs are enriched,

which are implicated in brain development (Bylund et al., 2003), which is in line

with their later repression compared to the aforementioned pluripotency TFs. In

the enhancers that get demethylated early, we again see enrichment of binding sites

for members of the T-Box TF family TBX and EOMES, and enhancers with late

demethylation show enrichment in GATA TFs, which is in line with the enrichment

results of differentially accessible regions.
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Figure 3.21 | Transcription factor enrichment of differentially methylated en-
hancers. a) k-means clustering of pseudotime trajectories. Each grey line represents the
average methylation rate ρ within a significant subregion identified by GPmeth. Dark red
lines are the mean trajectory of each cluster. b) Transcription factor motif enrichment
per cluster(Fisher’s exact test, -log(p-value) BH-adjusted, y-axis) versus differential RNA
expression (GPcounts, -log(q-value) , x -axis) of the transcription factor. Red points are
significant at FDR < 0.05 in bot enrichment and differential RNA expression. c) Scaled view
of Transcription factor motif enrichment per cluster. Green lines are specifically enriched
in the early down and late down clusters (FDR< 10−17). Blue lines and purple lines are
specifically enriched in the early up and late up clusters (FDR<10−23) respectively. Figure
generated by Max Frank.

I also investigated again if the same enrichments can be found without using the

refined subregions identified by GPmeth and found the same result of nonspecific

enrichment (Fig 3.22).
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Figure 3.22 | Transcription factor enrichment of differentially methylated full
enhancer regions. Scaled view of transcription factor motif enrichment per methylation
pseudotime trajectory cluster (Fig 3.21). Lines are colored the same as in the above figure
and represent cluster-specific enrichment found with the GPmeth workflow. Note that all
lines are close to parallel, indicating that the enrichment is identical the same for all four
clusters. Figure generated by Max Frank.

3.3.5 Analysis of lineage-defining enhancer regions

Next, I investigated whether the GPmeth results for Mesoderm enhancers are in

agreement with biological expectations. Since the enhancer regions are based on the

combined ChIP-seq signal of differentiated Mesoderm, Endoderm, and Ectoderm

tissues, we can define lineage-specific enhancers by overlapping ChIP-seq peaks for the

individual lineages with the combined signal and filtering peaks that are exclusively

present in one of the tissues. This was done analogously to Argelaguet et al., 2019b.

Here I only considered lineage-specific enhancer regions that perfectly overlapped the

regions of the combined signal. This resulted in 2122 Ectoderm-specific enhancers,

1036 Endoderm-specific enhancers and 895 Mesoderm-specific enhancers. Note that

this list will not be exhaustive for all lineage-specific enhancers.

With these lineage-specific enhancers in hand, I first assessed how many of these regions

show significant differential methylation/accessibility during Mesoderm formation (Fig

3.23). As expected Mesoderm-specific enhancers are most likely to be differentially

methylated or accessible, with 119 (differentially methylated), 100 (differentially

accessible) and 129 (both) regions out of 895 regions tested. Conversely, there are

almost no Endoderm enhancers that show differential methylation or differential

accessibility. Interestingly, however, there are 214 differentially methylated, 247

differentially accessible and 79 differentially methylated and accessible Ectoderm

enhancers.
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Figure 3.23 | Number of differentially methylated/accessible lineage-specific
enhancers. Bar heights indicate the number of lineage-specific enhancer regions that were
identified by GPmeth to be significantly differentially accessible or methylated (FDR=0.1).
GPmeth found 335 out of 2122 (16%) Ectoderm-specific enhancers, 229 out of 895 (26%)
Mesoderm-specific enhancers and 28 out of 1036 (3%) Endoderm-specific enhancers to be
differentially accessible. Of those, 79 (Ectoderm), 129 (Mesoderm), and 3 (Endoderm) were
also differentially methylated. Figure generated by Max Frank.

While this may be surprising at first glance, a closer inspection reveals that many

Ectoderm-specific enhancers are already demethylated and highly accessible in E5.5

Epiblast cells and stay demethylated and accessible during Ectoderm formation

but get methylated and closed in cells of the other two germ layers. This was also

found in Argelaguet et al., 2019b. Using the GPmeth output, this phenomenon can

be shown by calculating the average methylation/accessibility rate across pseudo-

time and genomic for all lineage-specific enhancers. Figure 3.24 shows the averaged

methylation predictions of the model along Mesoderm development. Here, it becomes

clear that Mesoderm-specific enhancers start out highly methylated at E5.5 and

become demethylated over time, while Ectoderm-specific enhancers start out with

low methylation and methylation slightly increases over time. Endoderm-specific

enhancers mostly stay methylated throughout Mesoderm lineage formation. Note

that the bottom right panel of Figure 3.24 depicts the average of only 37 significantly

differentially methylated regions.
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Figure 3.24 | Averaged methylation rate profiles for lineage-specific enhancers. The
heatmaps represent the GPmeth posterior mean predictions, averaged across lineage-specific
enhancer regions for Ectoderm enhancers (left column), Mesoderm enhancers (center column)
and Endoderm enhancers (right column). The averages were produced by taking predictions
of the GPmeth model for each region in a regular grid across a 4kb genomic window centered
around the middle of the H3K27ac ChIP-seq peak and pseudotime and taking the averages
of the aligned grids. The top row averages all lineage-specific enhancers for the respective
lineage, while the bottom row only averages differentially methylated enhancers (FDR < 0.1).
Figure generated by Max Frank.

Compared to endogenous methylation, chromatin accessibility follows the oppo-

site trend, Figure 3.25 shows the averaged predictions of the model, showing that

Mesoderm-specific enhancers start out mostly inaccessible at E5.5 and become increas-

ingly accessible over time while Ectoderm-specific enhancers start out at intermediate

accessibility rates and decrease over time. Endoderm-specific enhancers mostly stay

at intermediate accessibility throughout Mesoderm lineage formation.
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Figure 3.25 | Averaged accessibility rate profiles for lineage-specific enhancers.
The heatmaps represent the GPmeth posterior mean predictions, averaged for lineage-specific
enhancer regions for Ectoderm enhancers (left column), Mesoderm enhancers (center column)
and Endoderm enhancers (right column). The averages were produced by taking predictions
of the GPmeth model in a regular grid across a 4kb genomic window centered around the
middle of the H3K27ac ChIP-seq peak and pseudotime. The top row averages all lineage-
specific enhancers for the respective lineage, while the bottom row only averages differentially
methylated enhancers (FDR 0.1). Figure generated by Max Frank.

While these averages give insights into spatiotemporal changes in methylation rate,

similar plots could be produced by simply binning the scBS-seq data across time

and smaller genomic windows directly. GPmeth, however, also offers insights into the

distribution of methylation rate changes based on individual regions. To investigate

this, I extracted the averaged predictions of GPmeth for all significant regions

within the refined subregions. For each significantly differentially methylated lineage-

specific enhancer, I then visualize the subregion with a 95% CI MMRC > 0.3(Fig

3.26). Differentially methylated Mesoderm enhancers almost exclusively decrease in

methylation rate over time, while the majority of differential Ectoderm enhancers

increase in methylation rate over time. In comparison, the few significant Endoderm

enhancers show a more mixed signal.
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Figure 3.26 | GPmeth refined pseudotemporal methylation trajectories of lineage-
specific enhancer regions. Lines represent the GPmeth posterior methylation rate averages
of the refined subregions found within differentially methylated enhancers by the model.
Ectoderm-specific enhancers consistently increase in methylation rate over time, while
Mesoderm-specific enhancers decrease in methylation rate. Ectoderm-specific enhancers
(left) increase methylation rate from 0.34 to 0.61 on average across the pseudotime range.
Mesoderm-specific enhancers (center) decrease methylation rate from 0.78 to 0.36, and
Endoderm-specific enhancers decrease from 0.74 to 0.43 on average. Figure generated by Max
Frank.

To get a more quantitative measure of the pseudotemporal trends for each enhancer

class, I used k-means clustering to extract patterns in methylation rate from this

data. Figure 3.27 shows the extracted trends for three clusters. Note that methylation

rates were scaled for each time series to make the clustering invariant to absolute

methylation rate effects. For Ectoderm-specific enhancers, there is one cluster for the

majority of regions that increase in methylation over time, and two clusters capture

outlier patterns with decreasing methylation rate. For Mesoderm, k-means found

one cluster for outlier patterns with increasing methylation rate and two distinct

patterns for decreasing methylation rates, where one group of enhancers decreases

in methylation rate consistently over time while the other group appears to stay

highly methylated until half the pseudotime has passed and then experience rapid

demethylation. Similar groups are observed in Endoderm, which could be due to

some mislabeled regions or off-target effects.
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Figure 3.27 | Clustered pseudotemporal trajectories of lineage-specific enhancer
regions. Shown are the same pseudotemporal trajectories of methylation rate predictions
as in Figure 3.26, but every trajectory was scaled to the range of [0,1] for scale-invariant
clustering. These trajectories were then clustered with k-means based on Euclidean distance.
A fixed number of three clusters was specified to capture up to two different trends in the
trajectories and outlier trajectories. Figure generated by Max Frank.

One interesting question that can be addressed by the high spatiotemporal resolution

of GPmeth models is the temporal order in which certain epigenetic regulatory events

happen. For example, does the increase in Ectoderm enhancer methylation precede

or succeed the decrease in methylation of Mesoderm enhancers during Mesoderm

formation. For this purpose, I plotted the extracted patterns against each other

while inverting the trend for Ectoderm enhancers for better comparability (Fig 3.28).

While there is substantial overlap between the distributions of time series, there is a

clear shift where Mesoderm enhancers are demethylated after Ectoderm enhancers

are methylated. This is not unexpected since there is substantial overlap between

Ectoderm enhancers and pluripotency enhancers (Argelaguet et al., 2019b), which

should be expected to get inactivated relatively early.
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Figure 3.28 | Temporal comparison of Ectoderm and Mesoderm-specific enhancer
methylation. Lines are pseudotemporal trajectories of lineage-specific enhancers as in Figure
3.27. Green lines correspond to the two major clusters of Mesoderm enhancers that are
demethylated over time. Purple lines correspond to the inverse profiles (i.e., 1-methylation
rate) of Ectoderm enhancers that are methylated over time. Both enhancer classes show
similar temporal patterns, but Ectoderm-specific enhancer methylation tends to precede
Mesoderm-specific enhancer demethylation. Figure generated by Max Frank.

I performed the same analysis for accessibility rate trajectories of lineage-specific

enhancers, with similar results to methylation rates. Details of this analysis can be

found in the Appendix (A.1).

3.3.6 Integration of molecular modalities

One of the benefits of the GPmeth model is that it allows the investigation of

the relationships between the modalities that are measured in scNMT-seq in great

detail. In this Section, I will describe the analyses that I performed to integrate

RNA expression, DNA methylation, and chromatin accessibility over the course of

Mesoderm development. First, I will discuss the analysis of promoter regions, followed

by H3K27ac enhancers. GPmeth provided models for methylation and accessibility

in these regions. To detect differential RNA expression, I applied another Gaussian

process-based tool called GPcounts (BinTayyash et al., 2021) to the expression profiles

of 1171 cells measured by scNMT-seq along the same Mesoderm pseudotime course.

Briefly, GPcounts fits a dynamic and a static model to the pseudotime expression

profiles of each gene and performs a likelihood-ratio test to find variable genes. This

means I could perform an analysis of the GP model outputs of RNA expression

(GPcounts) promoter methylation and promoter accessibility (GPmeth).

3.3.6.1 Integrative analysis of Promoter regions

As described in Section 3.3.2, most promoter regions are not differentially methylated

or accessible during Mesoderm development. However, there are more than 5000 genes
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that change in expression during this process (Fig 3.29). Only a very small subset of

20 promoter-gene pairs is significantly changing in all three modalities. Furthermore

only 26 promoters are changing both their methylation rate and their chromatin

accessibility. It is tempting to conclude that the three modalities are, therefore, not

linked at all in this scenario. However note that this overlap is dependent on the

significance and effect size cutoffs of tests. This will be explored in more detail below.

Figure 3.29 | Venn Diagram of differentially regulated genes and promoters.
Number of significant promoters/genes found by GPmeth/GPcounts, respectively. The cutoff
for significance with GPmeth used here was FDR<0.1 and MMRC > 0.3. For GPcounts,
significant differential gene expression was defined q-value < 0.1. Figure generated by Max
Frank.

Next, I compared the model estimates of the magnitudes of change for each modality.

Figure 3.30 compares the fold-change estimates of RNA expression with the MMRC

output of GPmeth for all promoters. As expected there is only a small number of

promoters that change in RNA expression congruently with promoter methylation

or accessibility. Furthermore, the promoter MMRC does not seem to be correlated

to the fold-change of the gene even for promoter-gene pairs that are significantly

differentially accessible/methylated and differentially expressed (Fig 3.30 left and

middle panel, green points). In contrast, there seems to be a moderate link between

the accessibility MMRC estimate and the methylation MMRC estimate (Fig 3.30

right panel, green points). This link will be explored further below.



118 Application of GPmeth to scNMT data of Mouse Gastrulation

Figure 3.30 | Effect sizes of differential regulation of gene-promoter pairs. Scatter-
plots show the pairwise comparison of promoter methylation/accessibility and gene expression
change magnitudes during Mesoderm development. The left panel shows -log10 RNA expres-
sion fold change (x-axis) versus the MMRC estimate of promoter methylation (y-axis). The
center panel shows the -log10 RNA expression fold change (x-axis) and MMRC estimate
of promoter accessibility on the y-axis. The right panel plots accessibility MMRC (x-axis)
versus methylation MMRC (y-axis). Yellow dots points significant changes (FDR<0.1) in
the modality displayed on the x-axis, blue points indicate significant changes of the modality
on the y-axis, and green points indicate significant changes in both. Figure generated by Max
Frank.

The comparison of the magnitude of change in methylation and accessibility above

does not directly give any information about the link between the modalities. There-

fore I extracted the posterior methylation rate estimates within refined promoter

subregions at 20 equally spaced points across pseudotime, similar to Section 3.3.4. I

also extracted these estimates for promoters that were not significantly differentially

methylated/accessible. Then I calculated the correlation between the accessibility and

methylation time series. Figure 3.31 shows the correlation estimates for four different

classes of promoters: differentially methylated, differentially accessible, neither differ-

entially methylated nor accessible (not differential), as well as differentially methylated

and differentially accessible (both). The majority of promoters that GPmeth detected

as both were highly inversely correlated, which would be expected if a promoter gets

activated or inactivated over time. Interestingly, of the subset of regions that were

only differentially methylated, most are still highly inversely correlated. This could

hint at the fact that these regions are still co-regulated, but there was not enough data

to detect differential accessibility. In promoters that were only differentially accessible,

most regions are not more inversely correlated than the background distribution

of non-differential regions. Overall, this hints at the fact that methylation changes

in promoters are mostly accompanied by opposite accessibility changes, whereas

accessibility changes do not necessarily result in changes in methylation rate.
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Figure 3.31 | Correlation of promoter methylation and accessibility during Meso-
derm development. Kernel density estimates of the distributions of Pearson-correlation
between promoter methylation and promoter accessibility time series extracted from GPmeth.
The color indicates if GPmeth identified the promoter as significantly methylated/accessible
at FDR<0.1 and MMRC>0.3. Figure generated by Max Frank.

To investigate if there is a small population of genes where methylation accessibility

and RNA expression are directly linked, I calculated the correlations of promoter

methylation/accessibility time series to RNA time series extracted from the GPcounts

models. Figure 3.32 shows the correlations for the four classes of promoters. The

expectation for classical gene regulation would be that promoter methylation is

repressing the expression of a gene. Therefore, we expect a negative correlation.

Promoter accessibility should induce gene expression, resulting in a positive correlation.

There does not seem to be a strong enrichment for negative correlations in differentially

methylated promoters. There is a small enrichment for positive correlations for

differentially accessible regions, meaning that for a small subset of genes, promoter

accessibility could play a role in gene regulation during Mesoderm formation, but this

regulation seems independent of methylation. If we filter for correlation coefficients of

>0.7 for methylation/RNA and <-0.7 for accessibility/RNA, we are left with only 6

promoter-gene pairs: Cldn4, Helb, Arg1, Sec16b, Ap1m2, Slc40a1. These genes do

not seem to play special roles in Mesoderm development.
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Figure 3.32 | Correlation of promoter methylation/accessibility and gene expres-
sion during Mesoderm formation. Scatterplot of Pearson-correlation between promoter
methylation and gene expression time series (x-axis) and Pearson-correlation of promoter
accessibility and gene expression time series (y-axis). The columns correspond to classes of
promoters that GPmeth identified as differentially methylated/accessible. Figure generated
by Max Frank.

To investigate these regions in more detail, I visualized the model outputs of all three

modalities in Figure 3.33. A common theme of these regions is that the methylation

change subregions identified by GPmeth (shaded grey regions) are only close to the

center of the regions that harbor the TSS in one case. Conversely, the accessibility

changes are close to the TSS in four out of six cases. Another interesting observation

is that the subregions of differential methylation and differential accessibility do not

always overlap. All this could suggest that it is not the concerted regulation of the TSS

by methylation and accessibility that produces changes in gene expression. Rather,

there might be regulatory regions such as enhancers that are in close proximity

to the genes TSS that regulate its expression. Notably, this observation was only

possible with the high genomic resolution of GPmeth and would have been missed by

techniques that average signal across genomic windows.
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Figure 3.33 | Model predictions of promoters with potential gene regulation
capabilities. The left and center columns depicts GPmeth predictions for DNA methylation
and accessibility of promoters, respectively. The x-axis of the GPmeth plots depicts the
genomic position, with 0 corresponding to the transcription start site. The scatterplot depicts
the input data to the model measured by scNMT-seq, where blue indicates unmethylated
sites and red indicates methylated sites. The contours correspond to the posterior mean
prediction of the methylation rate ρ by the GPmeth model. Underneath the scatterplot,
the blue line indicates the maximum methylation rate change over pseudotime (MMRC)
of every genomic location predicted by the model. The blue-shaded regions indicate the
95% confidence interval around that prediction. Grey-shaded areas span genomic regions
where the predicted MMRC is 0.3. The right column depicts the GPcounts model of RNA
expression of the corresponding gene. The x-axis represents pseudotime, and the y-axis are
log-scaled counts of RNA expression. Every grey point is a measurement in a cell. The grey
line is the mean posterior prediction of the GPcounts model, and the dark and light grey
shaded areas represent the 68% and 95% confidence interval, respectively. Figure generated
by Max Frank.
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However, when looking at just the connection between promoter accessibility and

gene expression, there is a larger number of positively correlated gene-promoter pairs.

Furthermore, the subregions identified by GPmeth are tightly distributed around the

TSS of the gene. This distribution gets even narrower when filtering promoter-gene

pairs where accessibility and RNA expression are highly correlated (Fig 3.34). In total,

94 gene-promoter pairs were significantly differentially expressed and accessible and

had a Pearson-correlation coefficient of >0.7. Of these, 64 gene-promoter pairs had

refined accessibility subregions within a 500bp window around the TSS. Therefore,

there is a small subset of genes where promoter accessibility likely influences gene

expression.

Figure 3.34 | Distance of differentially accessible subregions to transcription
start sites. Kernel density estimate plots show the distribution of distances of the center of
subregions that GPmeth identified as differentially accessible. The color indicates whether the
temporal accessibility rate change has a Pearson-correlation coefficient with RNA expression
of 0.7 or greater. Figure generated by Max Frank.

3.3.6.2 Integrative analysis of Enhancer regions

As discussed in Section 3.3.2, Enhancers are the main epigenetic drivers during

gastrulation. I, therefore, wanted to investigate the relationships between enhancer

methylation, enhancer accessibility, and gene expression. This analysis is somewhat

complicated by the fact that there is no simple mapping between enhancers and genes.

In this analysis, I used the simple approach to map enhancers to genes based on

genomic distance. For this, I calculated the distance of the center of each H3K27ac

enhancer window to the TSS of each protein-coding gene and paired each enhancer

with the gene that has the smallest distance. Note that this approach produces a

one-to-many mapping where one gene can be connected to multiple enhancers.

I then compared the three different modalities for each gene-enhancer pair. For en-

hancers, 663 regions were both significantly differentially methylated and significantly

differentially accessible. This is about a third of the 2242 differentially methylated and
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1980 differentially accessible enhancers in total. The overlap between both methyla-

tion/accessibility and RNA expression was similarly low, with 751 and 675 enhancers,

respectively, and only 214 enhancers being significantly differential in all three modal-

ities. For these overlaps, one has to keep in mind that they are dependent on the

established gene-enhancer links, which likely contain false positives. Furthermore,

as in the above Section, these overlaps are sensitive to significance cutoffs and are

investigated in more detail below.

Figure 3.35 | Venn Diagram of differentially regulated genes and nearby enhancers.
Number of significant enhancers/genes found by GPmeth/GPcounts, respectively. The cutoff
for significance with GPmeth used here was FDR<0.1 and MMRC > 0.3. For GPcounts,
significant differential gene expression was defined q-value < 0.1. Figure generated by Max
Frank.

Next I looked at the magnitude of change in each pair of modalities (Fig 3.36.

There was no visible correlation between the MMRC estimates of enhancer methyla-

tion/accessibility and RNA expression of the closest gene (Fig 3.36, left and center

panel). Conversely, enhancer methylation MMRC and accessibility MMRC seemed

to be linked (Fig 3.36, right panel). Interestingly, there are very few differentially

methylated enhancers (blue points) where the accessibility MMRC estimate is close

to zero, but there are quite some differentially accessible enhancers (yellow points)

with zero methylation change.
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Figure 3.36 | Effect sizes of differential regulation of gene-promoter pairs. Scatter-
plots show the pairwise comparison of promoter methylation/accessibility and gene expression
change magnitudes during Mesoderm development. The left panel shows -log10 RNA expres-
sion fold change (x-axis) versus the MMRC estimate of promoter methylation (y-axis). The
center panel shows the -log10 RNA expression fold change (x-axis) and MMRC estimate
of promoter accessibility on the y-axis. The right panel plots accessibility MMRC (x-axis)
versus methylation MMRC (y-axis). Yellow dots points significant changes (FDR<0.1) in
the modality displayed on the x-axis, blue points indicate significant changes of the modality
on the y-axis, and green points indicate significant changes in both. Figure generated by Max
Frank.

To see if the link connection between MMRC changes is due to the correlation of

methylation and accessibility over the course of Mesoderm development, I extracted

the time series of refined subregions identified by GPmeth as in the previous Section.

Similar to promoter dynamics, methylation and accessibility are highly inversely corre-

lated when they are labeled significant by GPmeth (Fig 3.37, green line). Furthermore,

enhancers that are significantly differentially methylated but not significantly differen-

tially accessible show a similar inverse correlation (turquoise line), and enhancers that

are significantly differentially accessible but not significantly differentially methylated

are bimodally distributed with peaks for no correlation and inverse correlation (dark

red line). This hints at the fact that some regions that were not identified as significant

by GPmeth are still jointly regulated by DNA methylation and chromatin accessibility,

but there were simply too few data points to reach significance.
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Figure 3.37 | Correlation of enhancer methylation and accessibility during Meso-
derm development. Kernel density estimates of the distributions of Pearson correlation
between enhancer methylation and enhancer accessibility time series extracted from GPmeth.
The color indicates if GPmeth identified the enhancer as significantly methylated/accessible
at FDR<0.1 and MMRC>0.3. Figure generated by Max Frank.

This is an interesting finding since this could provide a basis for inspecting the uncer-

tainty estimates of the GPmeth model. One advantage of using a fully probabilistic

model is that its posterior predictions are not just point estimates but are probability

distributions. Therefore, we can use the posterior estimate of the model to determine

how confident the model is in its prediction of accessibility rate. With this, I wanted

to answer what proportions of enhancer subregions that were differentially methylated

were not found as differentially accessible due to a lack of model confidence versus

truly unchanging accessibility. To this end, I extracted the genomic coordinates of

all 1980 differentially methylated enhancers and obtained posterior predictions for

chromatin accessibility within those regions. I calculated the mean, 5%, and 95%

confidence interval of those predictions and the Pearson-correlation of those time

series with the methylation time series. Figure 3.38, left panel shows the mean MMRC

estimates for methylation versus accessibility. As expected, the correlation between

the modalities is more likely to be negative if both regions have large mean MMRCs.

I then categorized the accessibility MMRC estimates into three groups: regions with

a 95% MMRC CI smaller than 0.3 (i.e., regions where the model is confident that

there are no large changes in accessibility), regions where the 5% MMRC CI is larger

than 0.3 (i.e. regions where the model is confident that changes in accessibility are

large) and those that fall between those criteria (i.e., regions where the model cannot

confidently say whether the accessibility rate is below or above 0.3). This classification

gives a lower and an upper bound for the potential number of enhancers that are

co-regulated by methylation and accessibility.
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Figure 3.38 | Correlation of enhancer methylation/accessibility with uncertainty
estimates. The left and center panels show a scatterplot of MMRC estimates of enhancer
methylation (x-axis) and enhancer accessibility (y-axis). In the left panel, points are colored
by Pearson-correlation values between methylation and accessibility time series. The center
panel shows a random subset of 100 enhancer subregions with error bars representing the 5%
and 95% quantile of MMRC predictions of the model. Points are colored by whether the 95%
quantile of accessibility MMRC predictions is smaller than 0.3 ("Confidently unchanging"),
or the 5% quantile is larger than 0.3 ("Confidently changing"), or if the error bars span the
0.3 cutoff ("Not confident"). The right panel depicts the number of enhancer subregions that
fall into each confidence category. Figure generated by Max Frank.

Concretely, there are 178 regions where GPmeth is confident about differential

accessibility, and the correlation coefficient is smaller than -0.6. This corresponds

to just 9 % of all differentially methylated enhancers and is the lower bound of co-

regulated regions. There are an additional 366 regions with a high inverse correlation

between accessibility and methylation where GPmeths 95% CI is above 0.3. Therefore,

the upper bound of co-regulated enhancers is 544, which is 27% of all differentially

methylated enhancers. Note that a classical test would have resulted in point estimates

for this proportion that would have likely fallen somewhere in the above-mentioned

range.

Next, I wanted to investigate the relationship between enhancer epigenetics and the

expression of the closest gene. I, therefore, calculated the correlations of enhancer

methylation/accessibility time series to RNA time series extracted from the GP-

counts model of linked genes. Figure 3.39 shows the correlations for enhancer regions

annotated by GPmeth. In contrast to promoters, this analysis showed a smaller

enrichment of expected correlations for enhancers that were marked as significant

by GPmeth compared to the background of non-significant enhancers. Interestingly,

enhancer accessibility and methylation seem to be both positively and negatively

correlated with gene expression to a similar extent. This probably hints at the fact

that predicting gene regulation through enhancers epigenetics requires more complex

models than linking genes to their closest enhancers. This is to be expected since it

is known that gene expression can be influenced through the combinatorial effects of

multiple enhancers.
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Figure 3.39 | Correlation of enhancer methylation/accessibility and gene expres-
sion during Mesoderm formation. Scatterplot of Pearson-correlation between enhancer
methylation and gene expression time series (x-axis) and Pearson-correlation of enhancer
accessibility and gene expression time series (y-axis). The columns correspond to classes of
promoters that GPmeth identified as differentially methylated/accessible. Figure generated
by Max Frank.

3.3.6.3 Temporal ordering of methylation and accessibility

One of the key questions in establishing models of gene regulation is whether observed

correlations between different regulatory events are causally related. An important

tool in establishing causality is the observation of temporal shifts between events. For

example, if an enhancer is observed to be demethylated before it becomes accessible,

it is impossible for the accessibility change to be the cause of the methylation rate

change. Since GPmeth models should predict methylation and accessibility rate

changes with high temporal resolution, I decided to investigate if there are detectable

temporal shifts between the time series of the two modalities.

To this end, I started with all enhancer subregions that GPmeth identified as differ-

entially methylated (FDR < 0.1, MMRC > 0.3). I then extracted the accessibility

predictions of GPmeth at the same subregions and filtered time series that had at

least a moderate inverse Pearson correlation of -0.6 or lower. This resulted in pairs of

predicted time series for 429 enhancer subregions. To find temporal shifts, I used a

modified measure of cross-correlation that is used to detect lag between time series in

the signal processing field (Rabiner and Gold, 1975). Briefly, the idea is to slide two

time series that should be aligned along each other’s temporal axis while calculating

the correlation between the signals at every shift position. If the correlation value

peaks at a certain shift position, then it is likely that the two time series are linearly

shifted with a lag corresponding to the shift position. Because the expectation for

methylation and accessibility rates is inversely correlated, the lag can be determined

by finding the highest inverse correlation value. Figure 3.40, (left panel) shows the

Pearson correlation values at different temporal shifts. As expected, on average, the

correlation between methylation and accessibility becomes weaker with large shifts.

Interestingly, there seems to be a small but consistent positive delay in the accessibility

time series. However, the distribution of calculated delays is quite broad (right panel),

meaning that some time series are also shifted in the other direction. The mode of

the delay distribution is at an accessibility delay of 0.1, which is 10% of the complete
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pseudotime trajectory. Since embryos in this dataset were sequenced over the course

of E6.5 to E7.5 this could roughly be translated to 5h of real time.

Figure 3.40 | Time delay of enhancer accessibility compared to methylation during
Mesoderm formation. The left panel shows the Pearson-correlation between methylation
and accessibility time series at different temporal shifts for differentially methylated enhancers
(grey lines, n=429). Delay is given as a fraction of the total pseudo-timespan from E6.5
to E7.5. The blue line represents the average of all individual profiles with shaded regions
indicating one standard deviation from the mean. The right histogram shows at which
time delay the strongest inverse Pearson-correlation was observed for each enhancer. Figure
generated by Max Frank.

Of course, this analysis is strongly dependent on the number of measured cells and

the frequency at which they were sequenced. Because this dataset only consists of

two sequencing time points, these results should be taken as preliminary.

3.4 Epigenomic regulation of other lineages

The majority of the results Section of this theis focussed on the Mesoderm lineage

formation during mouse gastrulation. This is because this lineage had substantially

more cells assigned by trajectory inference. Figure 3.41 shows the pseudotemporal

assignment of each cell for the four lineages. Note that there are few cells that map to

the late stages of Gut and Notochord development and the non-uniform distribution

of cells. Note also that pseudotime estimation resulted in a substantially shorter total

timespan for the Ectoderm lineage, a result of the high transcriptional similarity of

ectoderm cells to embryonic stem cells.
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Figure 3.41 | Pseudotime estimates for all four lineages. Jitterplot shows the
pseudotime assignment for each cell, in the four identified lineage trajectories. Colors indicate
cell-types as assigned by the mapping to a larger single-cell transcriptomic reference atlas
(Pijuan-Sala et al., 2019). Figure generated by Max Frank.

Despite the fewer cells in lineages other than Mesoderm, GPmeth identified differen-

tially methylated- (Fig 3.42) and accessible (Fig 3.43) enhancers and promoters. As

in the Mesoderm lineage, the Notochord and Gut lineages mainly exhibit methylation

and accessibility changes in enhancer regions, as evidenced by fewer differentially

accessible promoters. Conversely, in the Ectoderm lineage, there are almost no dif-

ferentially methylated or accessible promoters or enhancers. This is in line with the

notion that cells of this lineage are epigenetically primed earlier in development

(Muñoz-Sanjuán and Brivanlou, 2002; Argelaguet et al., 2018a).
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Figure 3.42 | Differential methylation of all lineages during gastrulation. Maximum
methylation rate change (MMRC) on the x-axis vs. significance on the y-axis (GPmeth
-log10 p-value) of promoter (left column) and enhancer (right column) methylation during
Mesoderm development. Rows correspond to different lineages. The horizontal dashed line
corresponds to a significance cutoff of FDR<0.1 after BH-adjustment for multiple testing.
The vertical dashed line represents an MMRC cutoff of 0.3. Red dots mark differentially
accessible regions. Figure generated by Max Frank.
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Figure 3.43 | Differential accessibility of all lineages during gastrulation. Maximum
methylation rate change (MMRC) on the x-axis vs. significance on the y-axis (GPmeth
-log10 p-value) of promoter (left column) and enhancer (right column) accessibility during
Mesoderm development. Rows correspond to different lineages. The horizontal dashed line
corresponds to a significance cutoff of FDR<0.1 after BH-adjustment for multiple testing.
The vertical dashed line represents an MMRC cutoff of 0.3. Red dots mark differentially
accessible regions. Figure generated by Max Frank.

To investigate enhancer regulation for different lineages further, I used the sets of

germ-layer-specific enhancer annotations, i.e., those enhancers that are derived from

ChIP-seq peaks exclusively present in one of the differentiated germ layers (see Section

3.2.2).

First, I assessed the average methylation and accessibility profiles of these enhancers

over the course of Ectoderm development. As can be seen by averaged methylation and

accessibility profiles in Figure 3.44, Ectoderm-specific enhancers are demethylated

and highly accessible throughout Ectoderm lineage development as expected. In
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contrast, lineage-specific enhancers for Mesoderm and Endoderm tissues stay highly

methylated and inaccessible.

Figure 3.44 | Averaged methylation rate profiles for lineage-specific enhancers
during Ectoderm development. The heatmaps represent the GPmeth posterior mean
predictions, averaged across lineage-specific enhancer regions for Ectoderm enhancers (left
column), Mesoderm enhancers (center column) and Endoderm enhancers (right column).
The averages were produced by taking predictions of the GPmeth model for each region in
a regular grid across a 4kb genomic window centered around the middle of the H3K27ac
ChIP-seq peak and pseudotime and taking the averages of the aligned grids. The top row
are averaged methylation profiles, the bottom row are averaged accessibility profiles. Figure
generated by Max Frank.

Next, I investigated the enhancer dynamics of the Gut and Notochord lineage. The

detailed Figures of this analysis can be found in Section A.2 and A.3. Both lineages

showed increases in accessibility and decreases in methylation of Endoderm-specific

enhancers (Fig A.8, A.9, A.14 and A.15). Interestingly, there were also a number of

Mesoderm-specific enhancers that exhibited the same temporal dynamics. This could

indicate that some Mesoderm-specific enhancers could be active in the earlier phases

of Gut and Notochord development.

Next, I assessed the overlaps between all enhancers that were found to be differentially

methylated by GPmeth to see if most regulatory regions are specific for only one

lineage or if there are enhancers that change in methylation rate in multiple lineages.

For simplicity, I excluded the Ectoderm lineage from this analysis because of the

low number of differential regions. Figure 3.45) shows that many enhancers change

in two or even all three of the lineages. This is not unexpected since differentiation,

in general, requires the downregulation of pluripotency genes, which would be a

requirement for all three lineages.
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Figure 3.45 | Overlaps in differentially methylated enhancers between lineages.
UpSet plot of the number of differentially methylated enhancers that are shared and exclusive
to the Notochord, Mesoderm, and Gut lineage. The height of the bar indicates the number in
each group of overlapping sets indicated below. The horizontal bars indicate the total number
of significant regions (FDR <0.1, MMRC > 0.3) per lineage. Figure generated by Max Frank.

Differentially accessible enhancers exhibit similar behavior, with many regions being

detected in multiple lineages (Fig 3.46).
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Figure 3.46 | Overlaps in differentially accessible enhancers between lineages.
UpSet plot of the number of differentially accessible enhancers that are shared and exclusive
to the Notochord, Mesoderm, and Gut lineage. The height of the bar indicates the number in
each group of overlapping sets indicated below. The horizontal bars indicate the total number
of significant regions (FDR <0.1, MMRC > 0.3) per lineage. Figure generated by Max Frank.
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4 | Discussion

The genome, the complete set of an organism’s DNA, remains largely constant across

all cells of an organism and throughout its lifetime, serving as a blueprint for its

biological functions. In contrast, the epigenome, which encompasses modifications

such as DNA methylation and chromatin accessibility, is highly dynamic and varies

significantly across different tissues and stages of development. These epigenetic marks

are crucial for regulating gene expression, influencing cell type specification, and

guiding cell fate decisions, underscoring the epigenome’s pivotal role in organismal

development and cellular differentiation.

Advancements in epigenetic profiling methods, such as ATAC-seq (Buenrostro et al.,

2013) for chromatin accessibility and bisulfite sequencing (Frommer et al., 1992) for

DNA methylation, have significantly enhanced our ability to probe the epigenetic

landscape of cells. These technologies generate comprehensive data on how the

epigenome is organized and how it changes in different cellular contexts, providing

insights into the regulatory mechanisms that underpin gene expression and cell

identity.

However, the analysis of epigenetic data, especially from single-cell assays, poses

considerable challenges. Bulk analysis techniques offer a deep view of epigenetic

changes across populations of cells but lack the ability to capture cell-to-cell variability

and are ill suited to capture continuous changes over time. Single-cell epigenetic assays,

on the other hand, reveal this heterogeneity but come with technical limitations

of reduced coverage due to low genomic input material. This makes it difficult to

detect subtle epigenetic changes and to study continuous biological processes, such as

developmental trajectories, at reasonable costs.

Current analytical tools, including statistical tests and computational models, devel-

oped for bulk assays, are often not directly applicable or sufficiently powerful to model

single-cell epigenetic data. They typically focus on identifying differences between

discrete, predefined cell populations rather than capturing continuous changes across

developmental pathways. This highlights the need for novel analytical approaches

that can leverage the sparse and heterogeneous nature of single-cell epigenetic data.
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In this Thesis, I described a strategy and modeling framework (GPmeth) to study

DNA methylation and chromatin accessibility in continuous biological processes. This

strategy uses the power of single-cell multimodal assays to measure transcriptomic

and epigenomic modalities in the same cell. Single-cell transcriptomic analyses are

well established and are able to reconstruct temporal dynamics of developmental

processes from single experiments through pseudotime reconstruction. With each

cell mapped onto the appropriate spot in the developmental trajectory, GPmeth

can then be used to model the rate of DNA methylation or chromatin accessibility

measured in parallel. Because these measurements are typically sparse, this modeling

requires tailored methods. Two key features of GPmeth allow it to combat the sparsity

of input data. First, it uses the pseudotemporal positions of cells as a continuous

variable to share information between cells that are close in time without placing

explicit assumptions on the type of temporal dynamics (such as linearity). Second,

it models methylation rate at base-pair resolution while still sharing information

between proximal genomic measurements. This allows the detection of differentially

methylated region boundaries within a larger genomic window.

4.1 Model benchmarking and validation

I validated the GPmeth model on synthetic data that was designed to mimic scNMT-

seq measurements (Section 2.2). This revealed the theoretical benefits and limitations

of this model.

The GPmeth model parametrized with an RBFRBF kernel consistently performed

close to the data-generating model in terms of correctly identifying differentially

methylated regions (Section 2.2.2, Fig 2.14). Furthermore, it clearly outperformed

a model that averages methylation measurements within a genomic window. As

expected, the performance difference increased when the subwindow of differential

methylation was decreased. When comparing GPmeth to Fisher’s exact test (Fisher,

1922) and scMET (Kapourani et al., 2021), there was a clear increase in statistical

power that was owed to the addition of the genomic kernel and the continuous

modeling of pseudotime. In practice, this means that GPmeth can detect more subtle

changes in methylation/accessibility at the same FDR threshold. Notably, this could

mean that GPmeth can better detect differentially methylated/accessible regions

(DMRs/DMAs) that either have a smaller magnitude of methylation rate change or

contain fewer CpG/GpC sites. I also used the simulation experiments to determine

the theoretical limitations on what types of regions can be detected with GPmeth.

GPmeth statistical power depends mainly on the following variables: the number

of cells assayed, the number of CpG/GpC sites that are differentially methylated,

and the magnitude of methylation rate change or maximum methylation rate change

(MMRC). In my simulations, I kept the number of cells fixed to 300, which can be

expected for a typical scNMT-seq experiment. I then varied the size of the subwindow

with differential methylation and the MMRC to see where the detection limits lie
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(Fig 2.12 and 2.13). Since CpG site density in the genome about ten times lower

than that of GpC sites, the detection of endogenous methylation differences is more

challenging compared to changes in chromatin accessibility. Regions with an MMRC

of 0.7 or larger could be faithfully detected with affected windows of 500bp or smaller.

With affected windows larger than 1000bp, GPmeth was able to detect rate changes

as low as 0.5. For GpC methylation, MMRC changes as small as 0.2 were detected in

affected windows larger than 500bp. With MMRC changes > 0.7, even subregions

smaller than 100bp were detected. One limitation of this test is that it did not control

for where along the pseudotemporal trajectory methylation rate changes occurred.

This can influence the detection limit since it determines how many cells will be

affected by differential methylation.

The fact that GPmeth performance was close to optimal (i.e., close to the performance

of the generative model used for producing the data), yet still was not able to detect

very small MMRC, or very short subregions, highlights the difficulty of this testing

problem and the importance of the correct aggregation of neighboring genomic loci

and cells.

I then compared GPmeth parametrized with an RBFRBF kernel to scMET on the

real scNMT-seq dataset of mouse embryonic stem cells during Mesoderm formation

(Section 3.3.3.3). It is important to note here that scMET was not designed to

accommodate continuous covariates and, thus, is not inherently suited for studying

developmental processes. However, I am currently unaware of any other single-

cell methods designed to accommodate such an experimental design. Therefore,

scMET was the closest possible comparison. Another disadvantage of scMET in this

comparison was the relatively large genomic window size that I chose to use. This

choice ensured that no differential subregions were missed by the GPmeth model,

which is designed to handle larger input windows. scMET works with summary

statistics for each cell and genomic window so that large windows will affect those

summary statistics negatively. At FDR < 0.1 scMET identified 380 differentially

methylated- and 68 differentially accessible enhancer regions. GPmeth identified 1769

differentially methylated and 2647 differentially accessible enhancers at the same

FDR (Fig 3.15). While this does not prove that GPmeth has more statistical power,

in the absence of any ground truth, many of the downstream results discussed below

provide evidence that the regions identified by GPmeth are genuine.

4.2 Investigating mouse gastrulation with GPmeth

After benchmarking and validating the GPmeth model, I applied it to a scNMT-

seq dataset of mouse embryonic stem-cells undergoing gastrulation (Argelaguet et

al., 2019b). First, I established pseudotime trajectories of lineage formation using

unsupervised dimensionality reduction and pseudotime estimation techniques. This

revealed four major trajectories, in which pluripotent epiblast cells differentiate
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into Mesoderm, Ectoderm, Gut, and Notochord cells from embryonic day (E)6.5

to E7.5. Since the Mesoderm trajectory had the largest number of cells, many

analyses in this thesis were focussing on this trajectory path. After cells were assigned

pseudotime values and lineage identity, I applied GPmeth to find differentially

methylated enhancers and promoters over the course of gastrulation. An immediate

finding was the low number of differentially methylated or accessible promoters (190

and 380 promoters, respectively, with FDR<0.1 and MMRC>0.3 out of 18,347 tested

regions). Conversely, out of 17,386 enhancer regions marked by H3K27ac, 2478 were

identified as differentially methylated and 2327 as differentially accessible by GPmeth

with the same criteria.

4.2.1 Promoter epigenetics

The low number of differentially methylated and accessible promoters strengthens the

notion that enhancer elements are the main drivers of embryonic lineage specification,

which has been observed before with alternative techniques (Cusanovich et al., 2018;

Zhang et al., 2018) and with MOFA analysis of the same dataset (Argelaguet et al.,

2019b). Investigating the GPmeth model outputs of promoters in more detail revealed

that the identified subregions were clustering around the TSS for accessibility but

spread throughout the 4kb input window for methylation (Fig 3.18 and 3.17). This is

hinting to the fact that differentially methylated promoter subregions might be differ-

ent types of regulatory elements that happen to be in close proximity to the TSS of the

gene. I also used the GPmeth output to investigate the relationship between promoter

methylation, promoter accessibility, and gene expression. Correlation between all

three modalities was only observed for a minute subset of 6 genes. Closer inspection

revealed again that differentially methylated regions were not overlapping with the

differential accessibility signal close to the TSS of the gene (Fig 3.33). Therefore, there

seems to be no concerted regulatory mechanism that changes DNA methylation and

chromatin accessibility of promoters to induce or repress gene expression. However,

chromatin accessibility itself was correlated with gene expression for a small but

meaningful set of 94 genes, mostly with differential accessibility in close proximity

to the TSS (Fig 3.34). GO-term analysis of this gene set (data not shown) revealed

expected terms such as "organism development", but also surprising enrichment

for terms related to placenta formation. Furthermore, the majority of these genes

decrease in gene expression and promoter accessibility during Mesoderm formation.

This could be an interesting avenue to further explore if promoter accessibility could

be important for the development of extraembryonic tissue arising from epiblast cells

that contribute to the embryonic part of the placenta (Panja and Paria, 2021).

4.2.2 Enhancer epigenetics

Since there was a high number of H3K27ac enhancer elements identified by GPmeth

both as differentially methylated (n=2478) as well as differentially accessible (n=2327),
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I wanted to investigate whether methylation and accessibility are dependent on one

another within these elements. This has been investigated recently in cultured mouse

embryonic stem cells using single-molecule footprinting (Kreibich et al., 2023; Krebs et

al., 2017) and produced the result that in a homogeneous population of cells only 3% of

active enhancers showed a dependency of chromatin accessibility on DNA methylation.

Enhancer methylation and accessibility dependency has also been investigated in

a dynamic system of macrophage differentiation, using bulk technologies (Barnett

et al., 2020). This study found little evidence for close temporal relationship between

chromatin accessibility changes and DNA methylation.

Here, I am assessing the dependency of chromatin accessibility on DNA methylation

in the context of a dynamically changing system that is Mesoderm formation. 663

enhancer regions were both significantly differentially methylated and significantly

differentially accessible during Mesoderm formation, which corresponds to about a

third of significant enhancers. However, as seen with promoters, this overlap is not

necessarily concrete evidence for co-regulation. Therefore, I assessed the correlation

between the temporal change profiles of methylation and accessibility rates. Interest-

ingly, this revealed that many differentially methylated regions are inversely correlated

with differential accessibility, whereas only a subset of differentially accessible regions

shows inverse temporal patterns of methylation (Fig 3.37). This could indicate that

during Mesoderm development, enhancer methylation can cause accessibility changes,

but the opposite is not necessarily true. To get a confident estimate of the proportion

of differentially methylated enhancers that show concordant (i.e., inversely correlated)

changes in accessibility, I compared GPmeth predictions at identified refined regions

that were differentially methylated. Because of the probabilistic nature of GPmeth, I

could separate differentially methylated enhancers into a group with a high degree

of certainty of co-variability (178 or 9%) and a group with lower certainty (366 or

18%). The second group consists of enhancers where the data is too sparse to make

a clear decision. While these proportions are significantly higher than described by

Kreibich et al., 2023, it is important to note that this analysis starts with a subset

of differentially methylated enhancers, which differs from the approach by Kreibich

et al., 2023 who started from a larger subset of regions with intermediate chromatin

accessibility. It is possible that the two sets of results cover different mechanisms of

co-regulation through methylation and accessibility and that the regulation mech-

anism described here is not a direct result of methylation-sensitive TF binding for

most enhancers but a mechanism on a longer time scale. Furthermore, these results

also differ from the findings by Barnett et al., 2020, where DNA methylation did not

change with increases or decreases of chromatin accessibility, at least not within a

time-span of hours. While the biological systems studied here and in Barnett et al.,

2020 are vastly different, this might be surprising. One important caveat is that the

ATAC-me technology used, only captures methylation in at least partially accessible

regions. Another important difference is that cells divide rapidly during embryonic

development, while macrophages are terminally differentiated and do not divide.
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Replication has been shown to be an important factor in DNA methylation changes

(Otani et al., 2013).

To gain more information about the possible mechanisms underlying this co-regulation,

I investigated if there is a temporal delay in methylation and accessibility changes.

Temporal delays are important in studying gene regulation because they provide

additional evidence for causality relationships between linked events. I, therefore,

investigated if there are linear delays between methylation and accessibility based

on cross-correlation (Fig 3.40). Despite the distribution of shifts being relatively

broad, there was an average delay of accessibility changes compared to methylation

changes of 10% of the pseudotime range, which corresponds roughly to 5h of real-time

assuming linear mapping. While these results need further validation, they are in line

with methylation causing accessibility changes. However, it is important to note that

this evidence is still correlative, requiring experimental follow-up.

Temporal comparison of methylation and accessibility rate trajectories also revealed

that there is a temporal ordering in the activation and deactivation of lineage-specific

enhancers during gastrulation (see Section 3.3.5). Mesoderm development involves

the activation (i.e. demethylation and accessibility increases) of Mesoderm-specific

enhancers, but also the inactivation (i.e. methylation increases and accessibility

decreases) of Ectoderm-specific enhancers. This is in line with a departure from the

default differentiation path of Epiblast cells to Ectoderm cells that is epigenetically

programmed as early as E4.5 (Argelaguet et al., 2018a). Analysis of the GPmeth

trajectories revealed that Ectoderm-specific enhancers mostly get inactivated before

Mesoderm-specific enhancers get activated, indicating that cells first depart from

their default fate, before deciding on their Mesodermal or Endodermal trajectory.

4.2.3 GPmeth results as a basis for targeted experiments

It is important to highlight that the results described above provide testable hypotheses

for follow-up experiments. For example, the ability of GPmeth to identify the precise

subregions where differential methylation occurs can aid in the identification of targets

for inducing methylation with genome editing techniques (Yamazaki et al., 2020).

This could reveal if the observed correlations between enhancer methylation and

accessibility are, in fact, causal.

Furthermore, GPmeth, using scNMT-seq data with genome-wide coverage, could be

used as a tool for identifying targets for subsequent targeted versions of the same

experiment. Performing NOMe-seq with genome-wide coverage increases sequencing

costs. Instead, subregions identified by GPmeth could be targeted by reduced rep-

resentation bisulfite sequencing techniques (Meissner et al., 2005; Guo et al., 2015)

that reduce cost and potentially allow the sequencing of more cells.
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4.2.4 Limitations of this study

In this Section, I will discuss the limitations of this study and potential avenues to

overcome them. While scNMT allows for unprecedented insight into gene regulatory

mechanisms in individual cells, this comes with a high cost associated with this

technique. Therefore, it is challenging to scale this technique to tens- or hundreds of

thousands of cells. However, as the cost of sequencing decreases over time, I anticipate

that more scNMT datasets of a similar scale to the one used here or larger will

become available. Assaying more cells would increase the statistical power to detect

differentially methylated regions. As I have shown with simulations in Section 2.2.2

the sensitivity of GPmeth is still limited when the regions of differential methylation

or accessibility are small. For example, when it comes to TF footprinting, a genomic

resolution of 100 bp would be ideal to faithfully detect binding events, which often

only contain a handful of GpC sites and often only a single CpG site. This resolution

could only be achieved by sequencing more cells or decreasing the coverage of NOMe-

seq, which is difficult due to the limitation of input material. Therefore, this study

likely missed some important epigenetic regulatory regions due to their size or small

magnitude of change.

Another limitation is the non-uniform temporal sampling of cells. Since cells were

only collected at two distinct times during the lineage-defining phase of gastrulation

(E6.5 and E7.5), most cells were assigned pseudotime values at either end of the

spectrum. This could be overcome by simply including one or two more sequencing

runs with cells from embryos at the E7.0, E6.75, or E7.25 stages. This would be

especially interesting for assessing temporal shifts between modalities in more detail.

Furthermore, most epigenetic changes in this dataset either monotonously increased

or monotonously decreased during the assayed time course. One indication of this

is the good performance of the GPmeth model parametrized with a linear temporal

kernel. It would, therefore, be interesting to include developmental stages that go

beyond E7.5. This would capture the early formation of organ structures. For example

Pijuan-Sala et al., 2019 included cells up to E8.5, which captured the early formation

of the spinal cord, brain, heart, blood, and digestive system. Importantly, this involves

the up- and subsequent down-regulation of many genes, which is likely to go hand in

hand with non-linear epigenetic changes. Detecting these changes would necessitate a

nonparametric model like GPmeth.

In addition, the sampling of the different germ layers was uneven in this experiment,

which resulted in a lower number of cells mapping to the endoderm and ectoderm

lineage. For this reason, there was an emphasis on Mesoderm development in this

thesis, but a larger dataset would enable a more detailed model of the other germ

layers. Especially the formation of the ectoderm layer is accompanied by only subtle

changes in many regulatory elements since this trajectory is already primed in the

pluripotent stage (Argelaguet et al., 2019b).
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5 | Future outlook

GPmeth addresses two fundamental technical problems that are still limitations in

several single-cell studies. The first is the proper use of continuous covariates in

experiments that study cell populations that change their characteristics smoothly

across space or time. The second problem, specific to epigenomic studies, is the

absence of a fixed set of features that can be measured and used for downstream

analysis. The fundamental features of epigenetics are individual bases, but current

limitations in experimental setup often preclude the analysis on this level of detail.

Furthermore, individual bases are not independent units but are co-varying within

regulatory regions. The definition of these regulatory regions is a hard problem, and

there is no consensus database that works for all cell types and states. Therefore, I

think GPmeth could be used to solve these problems in the following ways.

Firstly, the capability of GPmeth to identify DMRs and DMAs in a data-driven

manner could be used to identify these regions genome-wide. In this study, I have

started from a set of putative promoter and enhancer regions, but this could be

extended to genomic windows covering whole chromosomes. However, this approach

should be taken with care since this would increase the multiple testing burden. Two

possible avenues could mitigate this problem. The first would be to segment the

genome in a manner that separates CpGs or GpCs that are further than 150 bp apart

since, beyond that distance, co-variation should be minimal. Secondly, some heuristics

can be applied to exclude windows with very low coverage or low total variance in

accessibility or methylation. This would allow us to find DMRs and DMAs free of

bias that could be introduced by selecting putative regulatory regions based on prior

knowledge.

Secondly, there are extensions that could be made to the model allowing for the explicit

modeling of trajectory branching dynamics. In this study, I have determined cell-

lineage associations based on pseudotime analysis alone and then separately modeled

these trajectories. However, it has been shown in GP models for gene-expression data

that branching dynamics can be directly included in the model structure (Yang et al.,

2016; Boukouvalas et al., 2018b; BinTayyash et al., 2021). This would also allow us to

identify when differential methylation/accessibility first occurs in a probabilistic way.
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Thirdly, it is possible to include spatial coordinates of cells as an additional or

alternative covariate to pseudotime in the GPmeth model. With the emergence of

epigenomic spatial single-cell approaches (Thornton et al., 2021; Deng et al., 2022), the

relationships between chromatin accessibility and DNA methylation of neighboring

cells can be explored. GPs have been a valuable tool for investigating the gene

expression profiles that spatial single-cell RNA sequencing assays produce (Svensson

et al., 2018; Kats et al., 2021) because of their flexibility in modeling non-linear

changes. Therefore, this could be an interesting application for GPmeth.

Lastly, GPmeth was designed for NOMe-seq data which produces a base resolution

output. However, the same problem of unclear definitions of regulatory features also

applies to other techniques. In ATAC-seq, features are usually defined by detect-

ing peaks of accessibility summed over all cells. Alternatively, cells are sometimes

roughly clustered based on the accessibility profile of genome-wide fixed-width bins,

followed by peak calling on clustered groups of cells. However, when studying a

continuous developmental process, clustering could be a sub-optimal approach (Fig

1.11). Therefore, an interesting avenue would be to apply the same principles used

by GPmeth to ATAC-seq datasets. For example, in a multimodal ATAC-seq dataset

(Chen et al., 2019; Ma et al., 2020), trajectories could be established using the RNA

modality. Then, a GP model could model the distribution of reads directly across

pseudotime and the genome dimension, resulting in more precise regions of differential

accessibility. This could improve the identification of TF binding sites or the detection

of gene-enhancer pairs.

A detailed understanding of the exact genomic position of epigenetic changes, com-

bined with high temporal resolution of these changes over biological processes has the

potential to greatly enhance our understanding of how gene regulation informs cell

fate. As technologies emerge with the potential to provide this information, models

that can make full use of this data will be essential.
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6 | Additional Methods

6.1 GPmeth

6.1.1 Model optimization

A gaussian process is trained by optimizing its marginal likelihood with respect to

the hyperparameters of the model. The marginal likelihood is given by

p(y) =

∫

p(y | f)N(f | µ,K(x,x))df , (6.1)

where µ is the mean rate of the region and K(x,x) is the covariance matrix specified

by the full kernel function. This likelihood is untraceable in the case of Bernoulli

likelihood, so variational approximation is used to compute the evidence lower bound

(ELBO) as an approximation.

Models are trained in a two step fashion. First the model with only the genome kernel

is trained. Hyperparameters are initialized to sensible values as follows. Genome

kernel lengthscales are fixed at 150bp, temporal kernel lengthscales are initialized

with 0.21. The temporal kernel lengthscales are bounded between 0.2 and 100 to

avoid very small lengthscales that would be biologically implausible. Kernel variances

are initialized with 0.3. The model also has a fixed mean function that is set to

Φ−1(µrate), which is the probit function of the mean methylation/accesibility rate

within the modelled region.

After the null model is trained the optimized hyperparameters of the genomic kernel

are used to initialize the genomic kernels of the full models. The genomic kernel

lengthscales and variances of the full model are not trained further, while the hyper-

parameters of the product kernel are then optimized for the full model. The model

parameters of all trained models are saved in a custom Hdf5 (The HDF Group, 1997)

format to be retrievable for downstream applications. The ELBO of all models is also

recorded along with key model parameters in tsv format.
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6.1.2 Maximum methylation rate change calculation

The maximum methylation rate change (MMRC) of each modeled region is defined

as the largest change in methylation rate across pseudotime for each point in the

genome. This metric is calculated by producing posterior predictions of the GPmeth

model at a grid of evenly spaced location that span the modeled region in the genome

and pseudotime dimension. The number of points in this grid can be varied depending

on the desired resolution, with a default of 100 points across the genome dimension

and 20 points across the pseudotime dimension. Then for each genomic position, the

difference of the maximum and the minimum predicted posterior methylation rate is

calculated. If only a point estimate is desired, this can be done with the posterior

mean of the model. To calculate posterior distributions of the MMRC, the model

posterior is sampled (by default n=2,000 samples). For each sample, MMRC values

are calculated separately.

6.1.3 Generation of synthetic NOME-seq data

As discussed in Section 2.2, the process of generating synthetic data to assess model

performance consisted of three steps:

1. Generation of realistic locations of assayed CpG/GpC sites in a typical NOME-

seq experiment

2. Drawing methylation rates ρ from a generative model consisting of a GP with

a changewindow kernel

3. Bernoulli sampling from the simulated methylation rate at the assayed

CpG/GpC sites

This Section will describe the step of producing methylation rates with the desired

properties of differential methylation over time in more detail. The generative model

for ρ is

ρalt ∼ Φ(GP (0, kalt)

kalt = kgenome + kCW

kCW = koutsidex, x
′) ∗ (1− σ(x)) ∗ (1− σ(x′)) + kinside(x, x

′) ∗ σ(x) ∗ σ(x′)

σx0,x1(x) =
1

e−s(x−x0)
∗ 1

e−s(x−x1)

(6.2)

as described in section 2.2. This model can be constructed with two kernels, koutside

and kinside that control the temporal change of ρ outside and inside of the change

window [x0, x1] respectively. In the simulation the change window was chosen to be

placed centrally in the generated region, so that it could be specified with a single

width parameter w
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x0 = −w/2;x1 = w/2 (6.3)

The choice of kinside and koutside determine the differential methylation in the region.

In this simulation I chose the outside of the window to have no differential methylation

over time with a constant kernel with low variance and the inside of the window

to be a squared exponential kernel with a lengthscale of 0.5, which is half the total

pseudotime

koutside = 0.000001 (6.4)

kinside(x, x
′) = σ2f exp

(

−(x− x′)2

0.5

)

(6.5)

To test the performance of the model with different magnitudes of methylation rate

change, the goal is to produce a sample that fulfills the criterion of a certain rate

change at some point within the window. This corresponds to the MMRC value

described in Section 2.1.3. Depending on the desired MMRC, I changed the variance

parameter σf of kinside. Because sampling from a GP will yield a stochastic result

there is no direct relationship between MMRC and σf . Rather I chose to set

σf =



















1.3 if MMRC > 0.7

0.7 if 0.2 < MMRC < 0.7

0.1 if MMRC < 0.2

(6.6)

and then filtered out any samples from the model that did not fulfill the desired

MMRC up to a tolerance. In practice this worked well with a tolerance parameter of

0.05. For examples of this model see Figure 2.11.

6.1.4 Model calibration

For model calibration, 18,347 promoter regions and 17,386 H3K27ac enhancer regions

were selected. Pseudotimes and methylation values form from the mesoderm lineage

(415 cells) scNMT-seq gastrulation dataset were used. For each region, the pseudotime

values attached to each cell were randomly permuted five times resulting in a total of

91,735 shuffled promoter and 86,930 shuffled enhancer regions. After permutation

these regions are not expected to show significant methylation/accessibility changes

over time and thus the LLR values of the models can be used for calibration. All

models in Table 2.1 were trained on the permuted regions and LLR values were

calculated based on model comparisons (see Section 2.1.2). Modeled regions were

grouped, based on the number of observations within the regions, into five bins. This

grouping was done separately for promoter and enhancer regions. For each group

a χ2-mixture distribution was fit (see Section 2.2.4). To fit this null distribution,

the free parameters of the χ2-mixture, π, a, d, were estimated maximum likelihood
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estimation with a grid-search over the parameters. To increase the robustness of

the fit, the lowest 5% and the highest 5% quantile of the LLRs was excluded. The

estimation of parameters was performed with a custom function adapted from the

Chi2Mixture class of the limix package (Lippert et al., 2014). To estimate significance

of model comparisons on real regions, each region was matched with the appropriate

bin according to it’s number of input points. P-values were then calculated as the

tail function value of the null distribution at the respective LLR value.

6.1.5 Software availability

GPmeth is an open-source project available at https://github.com/mffrank/gpmeth.

6.2 Additional Methods for Mouse Gastrulation

6.2.1 Definition of enhancer and promoter regions

Bed files with H3K27ac marked regions were obtained from the orig-

inal publication (Argelaguet et al., 2018a), and can be downloaded from

ftp://ftp.ebi.ac.uk/pub/databases/scnmt_gastrulation. For GPmeth input the union

file H3K27ac_distal_E7.5_union_intersect12_500.bed was used. For the analysis of

lineage-specific enhancer regions, H3K27ac_distal_E7.5_Ect_intersect12_500.bed,

H3K27ac_distal_E7.5_End_intersect12_500.bed and

H3K27ac_distal_E7.5_Mes_intersect12_500.bed, contained the regions that

were detected in each of the separate germ-layers Ectoderm, Endoderm and

Mesoderm respectively. To define lineage-specific enhancers, the regions were

overlapped with the union file and lineage specific enhancers were defined as exact

overlaps that only matched to one of the three lineage files.

6.2.2 RNA-seq preprocessing and quality control

Raw count data (see 6.2.10) was analyzed with scanpy (Wolf et al., 2018). Cells with

fewer than 4000 or more than 11000 genes expressed genes were removed. Then cells

with more than 10% reads mapping to mitochondrial genes were removed, as well

as cells with more than 3 million total reads. Then reads counts were corrected for

library size and log-transformed.

6.2.3 RNA-seq dimensionality reduction and pseudotime inference

The preprocessed RNA data was mapped to a much larger single-cell atlas, as was

done in Argelaguet et al., 2018a, using a mutual nearest-neighbor (Haghverdi et al.,

2018) approach. The resulting mapped first principle components were used for

further analysis. To exlude batch effects caused by differences between embyos a

batch-balanced nearest-neighbor algorithm (bbknn, Polański et al., 2020) was used to

calculate a neighborhood graph of cells. This was then used as the input to calculate

https://github.com/mffrank/gpmeth
ftp://ftp.ebi.ac.uk/pub/databases/scnmt_gastrulation
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diffusion components (Haghverdi et al., 2016). Pseudotime was then calculated using

Palantir (Setty et al., 2019). Leiden-clustering of cells was performed based on the

diffusion maps, with resolution 0.6, leading to intentional overclustering. These clusters

were used to assign cells manually to the four lineages: Mesoderm, Gut, Notochord,

Ectoderm. Note that some cells are multiply assigned. For example early Epiplast

cells are part of all four lineages.

6.2.4 NOMe-seq data preprocessing

CpG sites (from A-C-G and T-C-G trinucleotides) and GpC sites (G-C-A, G-C-

C and G-C-T trinucleotides) for every cell (see 6.2.10), were obtained in tabular

Bismark (Krueger and Andrews, 2011) output format. The output for every cell was

concatenated and sorted by chromosome and position. This file was then compressed

and indexed with tabix (Li, 2011), enabling the fast retrieval positional subsets of

the data by the GPmeth model.

6.2.5 Differential gene expression with GPcounts

For each of the four lineages established in Section 6.2.3, differential gene expression

was assessed using GPcounts (BinTayyash et al., 2021). Cells belonging to each lineage

were filtered and their raw counts and previously calculated pseudotimes were used as

an input for a one sample test with negative binomial likelihood. This test computes

a test statistic based on the log-likelihood ratio between a dynamic model with an

RBF temporal kernel and a static model with a constant temporal kernel. P-values

were calculated assuming that the null-distribution of LLRs follows a χ2 distribution.

6.2.6 Detailed GPmeth workflow

Figure 6.1 shows the necessary steps to train GPmeth models. After preprocessing

and sorting methylation call files (Section 6.2.4), a bed formatted region file is used to

generate inputs for GPmeth. For each region, methylation or accessibility values are

extracted from the indexed file on disk. Cells are then matched with pseudotime values

(Section 6.2.3). This results in each observation of a CpG/GpC methylation event

having a genomic and peseudotemporal coordinate. This input is used to train the

GPmeth models (Section 6.1.1) and calculate LLR values. LLR values are transformed

into calibrated statistical estimates through the distributions of permuted null regions

(Section 6.1.4).
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Figure 6.1 | Overview of the computational workflow of fitting the GPmeth
model. Figure generated by Max Frank.

6.2.7 Refinement of differentially methylated regions

Refinement of differentially methylated/accessible regions was done based on thresh-

olding the MMRC (Section 6.1.2) at each genomic position. MMRCs were calculated

at 100 equally spaced points across the genomic input window. Then, neighboring

points exceeding an MMRC of 0.3 were merged to define subregions. The boundaries

of the subregions were defined as the leftmost and rightmost position for each region.

6.2.8 Calculation of methylation rate time-series

Time-series were based on model predictions on a grid of 100 times 20 equally spaced

positions in the genome and pseudotime dimension respectively. First, points were

subset based on the genomic position of the desired subregion. Then methylation

rate was averaged across the genome dimension, resulting in an array of 20 equally

spaced predictions of methylation rate across pseudotime.

6.2.9 Comparison to scMet

scMet takes as input the total and methylated number of observed CpG/GpC sites in

each cell within a region of interest. Each cell must be associated with a group, that is

compared. These quantities were calculated from the raw methylation data, and cells

filtered for the mesoderm lineage and grouped according to a pseudotime threshold

of 0.5 (with scaled pseudotime from zero to one). Additionally scMet can take region

level statistics into account as covariates. Thus, for each region the CpG/GpC density

was calculated and used in the scMet model. Cells and regions had to be additionally

filterered for sparsity, to ensure robust training of the model. First cells with less than

3 CpG/GpC sites within a region were excluded. Then regions with fewer than 10
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remaining cells were excluded from the analysis. Lastly only regions with a minimum

total variance of 0.0001 and a total methylation rate larger than 0.05 and smaller

than 0.95 were included to remove non-variable regions. Note that without these

filters the optimization of scMet was not stable.

6.2.10 Data availability

The raw sequencing data can be obtained from GSE121708. Parsed data, includ-

ing count matrices for RNA expression and methylation call files are available at

ftp://ftp.ebi.ac.uk/pub/databases/scnmt_gastrulation. The parsed data has been

used as a basis for this thesis. For details about processing of the raw sequencing

data see Argelaguet et al., 2019b.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE121708
ftp://ftp.ebi.ac.uk/pub/databases/scnmt_gastrulation
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A | Appendix

A.1 Analysis of accessibility of lineage-specific enhancers

during Mesoderm development

For each significantly differentially accessible lineage-specific enhancer, I then visualize

the subregion with the highest 95% CI MMRC (Fig A.1). Differentially accessible

Mesoderm enhancers almost exclusively increase in accessibility rate over time, while

the majority of differential Ectoderm enhancers decrease their accessibility rate over

time. In comparison, the few significant Endoderm enhancers show a more mixed

signal.

Figure A.1 | GPmeth refined pseudotemporal accessibility trajectories of lineage-
specific enhancer regions. Lines represent the GPmeth posterior accessibility rate averages
of the refined subregions found within differentially accessible enhancers by the model.
Ectoderm-specific enhancers consistently decrease in accessibility rate over time, while
Mesoderm-specific enhancers increase in accessibility rate. Ectoderm-specific enhancers (left)
decrease the accessibility rate from 0.62 to 0.36 on average across the pseudotime range.
Mesoderm-specific enhancers (center) increase accessibility rate from 0.31 to 0.62, and
Endoderm-specific enhancers increase slightly from 0.34 to 0.40 on average. Figure generated
by Max Frank.

I then again used k-means clustering to extract patterns in methylation rate from

this data. Figure A.2 shows the extracted trends for three clusters. We again find
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two major groups for Ectoderm- and Mesoderm-specific enhancers that correspond

to early and late increase/decrease in accessibility.

Figure A.2 | Clustered pseudotemporal accessibility trajectories of lineage-specific
enhancer regions. Shown are the same pseudotemporal trajectories of accessibility rate
predictions as in Figure A.1, but every trajectory was scaled to the range of [0,1] for scale-
invariant clustering. These trajectories were then clustered with k-means based on Euclidean
distance. A fixed number of three clusters was specified to capture up to two different trends
in the trajectories and outlier trajectories. Figure generated by Max Frank.

I compare the pseudotemporal trajectories of these two main groups in Figure A.3).

Ectoderm-specific enhancer accessibility decreases again seems to precede the increase

in accessibility of Mesoderm-specific enhancers, although the effect is not quite as

clear as with endogenous methylation.
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Figure A.3 | Temporal comparison of Ectoderm and Mesoderm-specific enhancer
accessibility. Lines are pseudotemporal trajectories of lineage-specific enhancers as in Figure
A.2. Green lines correspond to the two major clusters of Mesoderm enhancers that become
more accessible over time. Purple lines correspond to the inverse profiles (i.e., 1-accessibility
rate) of Ectoderm enhancers that become inaccessible over time. Both enhancer classes
show similar temporal patterns, but Ectoderm-specific enhancer accessibility changes tend to
precede Mesoderm-specific enhancer changes. Figure generated by Max Frank.

A.2 Epigenomic regulation during Gut development

Figure A.4 | Summary statistics of differentially methylated refined regions
during Gut development. The top left panel shows the number of subregions that are
found by GPmeth for every genomic window with significant differential methylation. Note
the log-scale on the y-axis. The top right panel shows the distribution of subregion widths,
i.e. the width of the genomic interval where the 95% CI MMRC is higher than a specified
threshold (in this case 0.3). The bottom left panel shows the positioning of the center of the
identified subregions relative to the center of the input genomic window. The bottom right
panel shows the average 95% CI MMRC of each identified subregion. Figure generated by
Max Frank.
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Figure A.5 | Number of differentially methylated lineage-specific enhancers during
Gut development. Bar heights indicate the number of lineage-specific enhancer regions
that were identified by GPmeth to be significantly differentially accessible or methylated
(FDR<0.1). Figure generated by Max Frank.

Figure A.6 | Averaged posterior methylation rate profiles for lineage-specific
enhancers during Gut development. The heatmaps represent the GPmeth posterior
mean predictions, averaged for lineage-specific enhancer regions for Ectoderm enhancers (left
column), Mesoderm enhancers (center column) and Endoderm enhancers (right column).
The averages were produced by taking predictions of the GPmeth model in a regular grid
across a 4kb genomic window centered around the middle of the H3K27ac ChIP-seq peak
and pseudotime. The top row averages all lineage-specific enhancer for the respective lineage,
while the bottom row only averages differentially methylated enhancers (FDR 0.1). Figure
generated by Max Frank.
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Figure A.7 | Averaged accessibility rate profiles for lineage-specific enhancers
during Gut development. The heatmaps represent the GPmeth posterior mean predictions,
averaged for lineage-specific enhancer regions for Ectoderm enhancers (left column), Mesoderm
enhancers (center column) and Endoderm enhancers (right column). The averages were
produced by taking predictions of the GPmeth model in a regular grid across a 4kb genomic
window centered around the middle of the H3K27ac ChIP-seq peak and pseudotime. The top
row averages all lineage-specific enhancer for the respective lineage, while the bottom row
only averages differentially methylated enhancers (FDR 0.1). Figure generated by Max Frank.

Figure A.8 | GPmeth refined pseudotemporal methylation trajectories of lineage-
specific enhancer regions during Gut develompent. Lines represent the GPmeth
posterior methylation rate averages of the refined subregions found within differentially
methylated enhancers by the model. Shown are Ectoderm enhancers (left column), Mesoderm
enhancers (center column) and Endoderm enhancers (right column). Figure generated by
Max Frank.
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Figure A.9 | GPmeth refined pseudotemporal accessibility trajectories of lineage-
specific enhancer regions during Gut develompent. Lines represent the GPmeth
posterior accessibility rate averages of the refined subregions found within differentially
accessible enhancers by the model. Shown are Ectoderm enhancers (left column), Mesoderm
enhancers (center column) and Endoderm enhancers (right column). Figure generated by
Max Frank.

A.3 Epigenomic regulation during Notochord develop-

ment

Figure A.10 | Summary statistics of differentially methylated refined regions
during Notochord development. The top left panel shows the number of subregions that
are found by GPmeth for every genomic window with significant differential methylation.
Note the log-scale on the y-axis. The top right panel shows the distribution of subregion
widths, i.e. the width of the genomic interval where the 95% CI MMRC is higher than a
specified threshold (in this case 0.3). The bottom left panel shows the positioning of the
center of the identified subregions relative to the center of the input genomic window. The
bottom right panel shows the average 95% CI MMRC of each identified subregion. Figure
generated by Max Frank.
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Figure A.11 | Number of differentially methylated lineage-specific enhancers
during Notochord development. Bar heights indicate the number of lineage-specific
enhancer regions that were identified by GPmeth to be significantly differentially accessible
or methylated (FDR<0.1). Figure generated by Max Frank.

Figure A.12 | Averaged posterior methylation rate profiles for lineage-specific
enhancers during Notochord development. The heatmaps represent the GPmeth
posterior mean predictions, averaged for lineage-specific enhancer regions for Ectoderm
enhancers (left column), Mesoderm enhancers (center column) and Endoderm enhancers
(right column). The averages were produced by taking predictions of the GPmeth model in
a regular grid across a 4kb genomic window centered around the middle of the H3K27ac
ChIP-seq peak and pseudotime. The top row averages all lineage-specific enhancer for the
respective lineage, while the bottom row only averages differentially methylated enhancers
(FDR 0.1). Figure generated by Max Frank.
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Figure A.13 | Averaged accessibility rate profiles for lineage-specific enhancers
during Notochord development. The heatmaps represent the GPmeth posterior mean
predictions, averaged for lineage-specific enhancer regions for Ectoderm enhancers (left
column), Mesoderm enhancers (center column) and Endoderm enhancers (right column).
The averages were produced by taking predictions of the GPmeth model in a regular grid
across a 4kb genomic window centered around the middle of the H3K27ac ChIP-seq peak
and pseudotime. The top row averages all lineage-specific enhancer for the respective lineage,
while the bottom row only averages differentially methylated enhancers (FDR 0.1). Figure
generated by Max Frank.

Figure A.14 | GPmeth refined pseudotemporal methylation trajectories of lineage-
specific enhancer regions during Notochord develompent. Lines represent the GPmeth
posterior methylation rate averages of the refined subregions found within differentially
methylated enhancers by the model. Shown are Ectoderm enhancers (left column), Mesoderm
enhancers (center column) and Endoderm enhancers (right column). Figure generated by
Max Frank.



A.3 Epigenomic regulation during Notochord development 161

Figure A.15 | GPmeth refined pseudotemporal accessibility trajectories of lineage-
specific enhancer regions during Notochord develompent. Lines represent the GPmeth
posterior accessibility rate averages of the refined subregions found within differentially
accessible enhancers by the model. Shown are Ectoderm enhancers (left column), Mesoderm
enhancers (center column) and Endoderm enhancers (right column). Figure generated by
Max Frank.
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I composed this thesis with Overleaf, and used a custom document structure based

on the ’Masters/Doctoral Thesis’ LATEXtemplate (www.latextemplates.com, authors

Steve Gunn, Sunil Patel, vel@latextemplates), modified by Dr. Markus Mund, Dr.

Jervis Vermal Thevathasan, Dr. Philipp Hoess, Dr. Yu-Le Wu, & Dr. Aline Tschanz,

which is available under CC BY-NC-SA 3.0.

Licenses used in this thesis

• CC BY-NC-SA 3.0: http://creativecommons.org/licenses/by-nc-sa/3.0/

• CC BY 4.0: https://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by/4.0/
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